BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3799963)

  • 1. Variables in xanthine oxidase-initiated luminol chemiluminescence: implications for chemiluminescence measurements in biological systems.
    Wilhelm J; Vilím V
    Anal Biochem; 1986 Oct; 158(1):201-10. PubMed ID: 3799963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates.
    Radi R; Rubbo H; Thomson L; Prodanov E
    Free Radic Biol Med; 1990; 8(2):121-6. PubMed ID: 2158934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does luminol chemiluminescence detect free radical scavengers?
    Clapperton M; McMurray J; Fisher AC; Dargie HJ
    Br J Clin Pharmacol; 1995 Jun; 39(6):688-91. PubMed ID: 7654490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drugs effects on superoxide generation and chemiluminescence response of human leukocytes.
    Pascual C; González R; Romay C
    Agents Actions; 1991 Mar; 32(3-4):277-82. PubMed ID: 1650521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils.
    Bedouhène S; Moulti-Mati F; Hurtado-Nedelec M; Dang PM; El-Benna J
    Am J Blood Res; 2017; 7(4):41-48. PubMed ID: 28804681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic activation of 1-naphthol and phenol by a simple superoxide-generating system and human leukocytes.
    Eastmond DA; French RC; Ross D; Smith MT
    Chem Biol Interact; 1987; 63(1):47-62. PubMed ID: 2820596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminol chemiluminescence and peroxidation of unsaturated fatty acid induced by the xanthine oxidase system: effect of oxygen radical scavengers.
    Miura T; Ogiso T
    Chem Pharm Bull (Tokyo); 1985 Aug; 33(8):3402-7. PubMed ID: 3841302
    [No Abstract]   [Full Text] [Related]  

  • 9. Adenosine, inosine, and hypoxanthine/xanthine measured in tissue and plasma by a luminescence method.
    Jabs CM; Neglen P; Eklof B; Thomas EJ
    Clin Chem; 1990 Jan; 36(1):81-7. PubMed ID: 2297938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of superoxide in luminol-dependent chemiluminescence triggered by mineral dust in rabbit alveolar macrophages.
    Wilhelm J; Vilím V; Brzák P
    Immunol Lett; 1987 Aug; 15(4):329-34. PubMed ID: 2826330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of the hypoxanthine-xanthine oxidase system on V79 cells: comparison of the effects of SOD and CuDIPS.
    Tachon P
    Free Radic Res Commun; 1989; 7(3-6):367-74. PubMed ID: 2583553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction.
    Hlavay J; Haemmerli SD; Guilbault GG
    Biosens Bioelectron; 1994; 9(3):189-95. PubMed ID: 8060588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia increases superoxide anion production from bovine coronary microvessels, but not cardiac myocytes, via increased xanthine oxidase.
    Kaminski PM; Wolin MS
    Microcirculation; 1994 Dec; 1(4):231-6. PubMed ID: 8790592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiluminescence from acetaldehyde oxidation by xanthine oxidase involves generation of and interactions with hydroxyl radicals.
    Puntarulo S; Cederbaum AI
    Alcohol Clin Exp Res; 1989 Feb; 13(1):84-90. PubMed ID: 2538093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminol-induced neutrophil chemiluminescence.
    Allred CD; Margetts J; Hill HR
    Biochim Biophys Acta; 1980 Aug; 631(2):380-5. PubMed ID: 7407252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of nitric oxide synthase to luminol-dependent chemiluminescence generated by phorbol-ester-activated Kupffer cells.
    Wang JF; Komarov P; Sies H; de Groot H
    Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):311-4. PubMed ID: 1718262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthine oxidase. Study of the enzyme-catalyzed oxidation of hypoxanthine through the chemiluminescence of luminol.
    Oyamburo GM; Prego CE; Prodanov E; Soto H
    Biochim Biophys Acta; 1970; 205(2):190-5. PubMed ID: 5420962
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparison of chemical systems for luminometric determination of antioxidant capacity towards individual reactive oxygen species.
    Komrskova D; Lojek A; Hrbac J; Ciz M
    Luminescence; 2006; 21(4):239-44. PubMed ID: 16791875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence.
    Castro L; Alvarez MN; Radi R
    Arch Biochem Biophys; 1996 Sep; 333(1):179-88. PubMed ID: 8806769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What do we measure by a luminol-dependent chemiluminescence of phagocytes?
    Vilim V; Wilhelm J
    Free Radic Biol Med; 1989; 6(6):623-9. PubMed ID: 2546866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.