These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37999792)

  • 1. Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction.
    Wang F; Xie L; Sun N; Zhi T; Zhang M; Liu Y; Luo Z; Yi L; Zhao Q; Wang L
    Nanomicro Lett; 2023 Nov; 16(1):32. PubMed ID: 37999792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress of electrochemical hydrogen evolution over 1T-MoS
    Zhang Y; Wang L; Chen Q; Cao J; Zhang C
    Front Chem; 2022; 10():1000406. PubMed ID: 36277349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress of molybdenum carbide based electrocatalysts for electrocatalytic hydrogen evolution reaction.
    Tong Y; Zhang Z; Hou Y; Yan L; Chen X; Zhang H; Wang X; Li Y
    Nanoscale; 2023 Sep; 15(36):14717-14736. PubMed ID: 37655752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts.
    Luo Y; Zhang Y; Zhu J; Tian X; Liu G; Feng Z; Pan L; Liu X; Han N; Tan R
    Small Methods; 2024 May; ():e2400158. PubMed ID: 38745530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review.
    Peera SG; Koutavarapu R; Chao L; Singh L; Murugadoss G; Rajeshkhanna G
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting.
    Xuan C; Zhang J; Wang J; Wang D
    Chem Asian J; 2020 Apr; 15(7):958-972. PubMed ID: 32048454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for Promoting Catalytic Performance of Ru-Based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction.
    Chu X; Wang L; Li J; Xu H
    Chem Rec; 2023 Apr; 23(4):e202300013. PubMed ID: 36806446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction.
    Xu Y; Zhang X; Liu Y; Wang R; Yang Y; Chen J
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11302-11320. PubMed ID: 36520289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOF-derived nanoarrays as advanced electrocatalysts for water splitting.
    Zhang Y; Qi L
    Nanoscale; 2022 Sep; 14(34):12196-12218. PubMed ID: 35968835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional materials as catalysts, interfaces, and electrodes for an efficient hydrogen evolution reaction.
    Cho YS; Kang J
    Nanoscale; 2024 Feb; 16(8):3936-3950. PubMed ID: 38347766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation.
    Li R; Liu X; Wu R; Wang J; Li Z; Chan KC; Wang H; Wu Y; Lu Z
    Adv Mater; 2019 Dec; 31(49):e1904989. PubMed ID: 31621969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering metallenes for boosting electrocatalytic biomass-oxidation-assisted hydrogen evolution reaction.
    Yang L; Wang K; Jin L; Xu H; Chen H
    Dalton Trans; 2023 Aug; 52(33):11378-11389. PubMed ID: 37551456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts.
    Li J; Zheng G
    Adv Sci (Weinh); 2017 Mar; 4(3):1600380. PubMed ID: 28331791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Wang B; Yang F; Feng L
    Small; 2023 Nov; 19(45):e2302866. PubMed ID: 37434101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in metal-organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions.
    Budnikova YH
    Dalton Trans; 2020 Sep; 49(36):12483-12502. PubMed ID: 32756705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in cobalt-based catalysts for efficient electrochemical hydrogen evolution: a review.
    Sun R; Huang X; Jiang J; Xu W; Zhou S; Wei Y; Li M; Chen Y; Han S
    Dalton Trans; 2022 Oct; 51(40):15205-15226. PubMed ID: 36125033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.