These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37999822)

  • 21. Supervised learning algorithm for analysis of communication signals in the weakly electric fish Apteronotus leptorhynchus.
    Lehotzky D; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 May; 210(3):443-458. PubMed ID: 37704754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.
    Walz H; Hupé GJ; Benda J; Lewis JE
    J Physiol Paris; 2013; 107(1-2):13-25. PubMed ID: 22981958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT
    J Neurobiol; 2006 Jan; 66(1):1-18. PubMed ID: 16187302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus.
    Dunlap KD; Thomas P; Zakon HH
    J Comp Physiol A; 1998 Jul; 183(1):77-86. PubMed ID: 9691480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates.
    Heiligenberg W; Metzner W; Wong CJ; Keller CH
    J Comp Physiol A; 1996 Nov; 179(5):653-74. PubMed ID: 8888577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Communication in the weakly electric fish Sternopygus macrurus. II. Behavioral test of conspecific EOD detection ability.
    Fleishman LJ; Zakon HH; Lemon WC
    J Comp Physiol A; 1992 Mar; 170(3):349-56. PubMed ID: 1593504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus.
    Dunlap KD; Pelczar PL; Knapp R
    Horm Behav; 2002 Sep; 42(2):97-108. PubMed ID: 12367563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.
    Dunlap KD; DiBenedictis BT; Banever SR
    J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects.
    Elekes K; Szabo T
    Exp Brain Res; 1985; 60(3):509-20. PubMed ID: 4076373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Communication in the weakly electric fish Sternopygus macrurus. I. The neural basis of conspecific EOD detection.
    Fleishman LJ
    J Comp Physiol A; 1992 Mar; 170(3):335-48. PubMed ID: 1593503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish.
    Smith GT; Zakon HH
    J Neurobiol; 2000 Feb; 42(2):270-86. PubMed ID: 10640333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus.
    Dunlap KD
    Horm Behav; 2002 Mar; 41(2):187-94. PubMed ID: 11855903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter.
    Keller CH
    J Comp Physiol A; 1988 Apr; 162(6):747-57. PubMed ID: 3397918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.