BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37999849)

  • 21. Trends in onroad transportation energy and emissions.
    Frey HC
    J Air Waste Manag Assoc; 2018 Jun; 68(6):514-563. PubMed ID: 29589998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.
    Clark NN; Johnson DR; McKain DL; Wayne WS; Li H; Rudek J; Mongold RA; Sandoval C; Covington AN; Hailer JT
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1328-1341. PubMed ID: 28829681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Well-to-wheel emissions and abatement strategies for passenger vehicles in two Latin American cities.
    Cuéllar-Álvarez Y; Clappier A; Osses M; Thunis P; Belalcázar-Cerón LC
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):72074-72085. PubMed ID: 35608767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitigation potential of black carbon emissions from on-road vehicles in China.
    Zhang S; Wu X; Zheng X; Wen Y; Wu Y
    Environ Pollut; 2021 Jun; 278():116746. PubMed ID: 33676196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections.
    Keshavarzmohammadian A; Henze DK; Milford JB
    Environ Sci Technol; 2017 Jun; 51(12):6665-6673. PubMed ID: 28399368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon emission model of vehicles driving at fluctuating speed on highway.
    Dong Y; Xu J; Ni J
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):18064-18077. PubMed ID: 36205872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trade-Offs between Direct Emission Reduction and Intersectoral Additional Emissions: Evidence from the Electrification Transition in China's Transport Sector.
    Wang Z; Zhang H; Wang B; Li H; Ma J; Zhang B; Zhuge C; Shan Y
    Environ Sci Technol; 2023 Aug; 57(31):11389-11400. PubMed ID: 37343129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of CO
    Abdallah L; El-Shennawy T
    EuroMediterr J Environ Integr; 2020; 5(3):49. PubMed ID: 32984503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets.
    Tang C; Tukker A; Sprecher B; Mogollón JM
    Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Are electric vehicles really the optimal option for the transportation sector in China to approach pollution reduction and carbon neutrality goals?
    Deng C; Qian Y; Song X; Xie M; Duan H; Shen P; Qiao Q
    J Environ Manage; 2024 Apr; 356():120648. PubMed ID: 38508012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Scenario Simulation and Effects Assessment of Co-control on Pollution and Carbon Emission Reduction in Beijing].
    Yu S; Zhang S; Zhang ZJ; Qu YZ; Liu TS
    Huan Jing Ke Xue; 2023 Apr; 44(4):1998-2008. PubMed ID: 37040950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
    Raykin L; MacLean HL; Roorda MJ
    Environ Sci Technol; 2012 Jun; 46(11):6363-70. PubMed ID: 22568681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Will improvements in transportation infrastructure help reduce urban carbon emissions?--motor vehicles as transmission channels.
    Li H; Luo N
    Environ Sci Pollut Res Int; 2022 May; 29(25):38175-38185. PubMed ID: 35072874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.