These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 37999962)
1. Enhanced Scalable Graph Neural Network via Knowledge Distillation. Mai C; Chang Y; Chen C; Zheng Z IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37999962 [TBL] [Abstract][Full Text] [Related]
2. Beyond low-pass filtering on large-scale graphs via Adaptive Filtering Graph Neural Networks. Zhang Q; Li J; Sun Y; Wang S; Gao J; Yin B Neural Netw; 2024 Jan; 169():1-10. PubMed ID: 37852165 [TBL] [Abstract][Full Text] [Related]
3. On Representation Knowledge Distillation for Graph Neural Networks. Joshi CK; Liu F; Xun X; Lin J; Foo CS IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4656-4667. PubMed ID: 36459610 [TBL] [Abstract][Full Text] [Related]
4. Decoupled graph knowledge distillation: A general logits-based method for learning MLPs on graphs. Tian Y; Xu S; Li M Neural Netw; 2024 Nov; 179():106567. PubMed ID: 39089155 [TBL] [Abstract][Full Text] [Related]
5. Position-Sensing Graph Neural Networks: Proactively Learning Nodes Relative Positions. Zhang Y; Qin Z; Anwar S; Kim D; Liu Y; Ji P; Gedeon T IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38530723 [TBL] [Abstract][Full Text] [Related]
6. Automatic Design of Deep Graph Neural Networks With Decoupled Mode. Tao Q; Cai R; Lin Z; Tang Y IEEE Trans Neural Netw Learn Syst; 2024 Aug; PP():. PubMed ID: 39141457 [TBL] [Abstract][Full Text] [Related]
7. DropAGG: Robust Graph Neural Networks via Drop Aggregation. Jiang B; Chen Y; Wang B; Xu H; Luo B Neural Netw; 2023 Jun; 163():65-74. PubMed ID: 37030276 [TBL] [Abstract][Full Text] [Related]
8. Generalizing Graph Neural Networks on Out-of-Distribution Graphs. Fan S; Wang X; Shi C; Cui P; Wang B IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):322-337. PubMed ID: 37782581 [TBL] [Abstract][Full Text] [Related]
9. Fine-Grained Learning Behavior-Oriented Knowledge Distillation for Graph Neural Networks. Liu K; Huang Z; Wang CD; Gao B; Chen Y IEEE Trans Neural Netw Learn Syst; 2024 Jul; PP():. PubMed ID: 39012738 [TBL] [Abstract][Full Text] [Related]
10. Graph Transformer Networks: Learning meta-path graphs to improve GNNs. Yun S; Jeong M; Yoo S; Lee S; Yi SS; Kim R; Kang J; Kim HJ Neural Netw; 2022 Sep; 153():104-119. PubMed ID: 35716619 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural Networks. Liu C; Ma X; Zhan Y; Ding L; Tao D; Du B; Hu W; Mandic DP IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14903-14917. PubMed ID: 37368807 [TBL] [Abstract][Full Text] [Related]
12. Frameless Graph Knowledge Distillation. Shi D; Shao Z; Gao J; Wang Z; Guo Y IEEE Trans Neural Netw Learn Syst; 2024 Sep; PP():. PubMed ID: 39231057 [TBL] [Abstract][Full Text] [Related]
13. SP-GNN: Learning structure and position information from graphs. Chen Y; You J; He J; Lin Y; Peng Y; Wu C; Zhu Y Neural Netw; 2023 Apr; 161():505-514. PubMed ID: 36805265 [TBL] [Abstract][Full Text] [Related]
14. Label Deconvolution for Node Representation Learning on Large-Scale Attributed Graphs Against Learning Bias. Shi Z; Wang J; Lu F; Chen H; Lian D; Wang Z; Ye J; Wu F IEEE Trans Pattern Anal Mach Intell; 2024 Dec; 46(12):11273-11286. PubMed ID: 39264793 [TBL] [Abstract][Full Text] [Related]
15. Evaluating graph neural networks under graph sampling scenarios. Wei Q; Hu G PeerJ Comput Sci; 2022; 8():e901. PubMed ID: 35494843 [TBL] [Abstract][Full Text] [Related]
16. Auto-GNN: Neural architecture search of graph neural networks. Zhou K; Huang X; Song Q; Chen R; Hu X Front Big Data; 2022; 5():1029307. PubMed ID: 36466713 [TBL] [Abstract][Full Text] [Related]
17. Scalable deeper graph neural networks for high-performance materials property prediction. Omee SS; Louis SY; Fu N; Wei L; Dey S; Dong R; Li Q; Hu J Patterns (N Y); 2022 May; 3(5):100491. PubMed ID: 35607621 [TBL] [Abstract][Full Text] [Related]
18. Weisfeiler-Lehman goes dynamic: An analysis of the expressive power of Graph Neural Networks for attributed and dynamic graphs. Beddar-Wiesing S; D'Inverno GA; Graziani C; Lachi V; Moallemy-Oureh A; Scarselli F; Thomas JM Neural Netw; 2024 May; 173():106213. PubMed ID: 38428377 [TBL] [Abstract][Full Text] [Related]
19. Another Perspective of Over-Smoothing: Alleviating Semantic Over-Smoothing in Deep GNNs. Li J; Zhang Q; Liu W; Chan AB; Fu YG IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38809736 [TBL] [Abstract][Full Text] [Related]