These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38000162)

  • 1. Synthesis of bioactive heat cured PMMA/PEKK blend reinforced by nano titanium dioxide for bone scaffold applications.
    AbdulHussain Kadhum S; Nassir NA
    J Mech Behav Biomed Mater; 2024 Feb; 150():106258. PubMed ID: 38000162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.
    Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M
    J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
    Converse GL; Conrad TL; Merrill CH; Roeder RK
    Acta Biomater; 2010 Mar; 6(3):856-63. PubMed ID: 19665061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength.
    Indra A; Razi R; Jasmayeti R; Fauzan A; Wahyudi D; Handra N; Subardi A; Susanto I; Iswandi ; Purnomo MJ
    J Mech Behav Biomed Mater; 2023 Jun; 142():105862. PubMed ID: 37086523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry.
    Yuan B; Cheng Q; Zhao R; Zhu X; Yang X; Yang X; Zhang K; Song Y; Zhang X
    Biomaterials; 2018 Jul; 170():116-126. PubMed ID: 29660634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-functional hydroxyapatite-coated 3D porous polyetherketoneketone scaffold for enhanced osteogenesis and osteointegration in orthopedic applications.
    Liu H; Liu T; Yin Z; Liu X; Tan Y; Zhao Y; Yu H
    Regen Biomater; 2024; 11():rbae023. PubMed ID: 38559647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration.
    Elakkiya K; Bargavi P; Balakumar S
    J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects.
    Kretlow JD; Shi M; Young S; Spicer PP; Demian N; Jansen JA; Wong ME; Kasper FK; Mikos AG
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1427-38. PubMed ID: 20524844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly(methyl methacrylate) for bone tissue engineering.
    Tithito T; Suntornsaratoon P; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Tang IM; Pon-On W
    Biomed Mater; 2019 Feb; 14(2):025013. PubMed ID: 30690438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.
    Han X; Lin H; Chen X; Li X; Guo G; Qu F
    IET Nanobiotechnol; 2016 Apr; 10(2):45-53. PubMed ID: 27074853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction.
    Wang L; Yoon DM; Spicer PP; Henslee AM; Scott DW; Wong ME; Kasper FK; Mikos AG
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):813-25. PubMed ID: 23359449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and properties of interweaved poly(ether ether ketone) composite scaffolds.
    Song X; Shi D; Li W; Qin H; Han X
    Sci Rep; 2022 Dec; 12(1):22193. PubMed ID: 36564487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO-TiO
    Vedhanayagam M; Anandasadagopan S; Nair BU; Sreeram KJ
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110378. PubMed ID: 31924005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of three-dimensional poly(ether- ether- ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering.
    Tan KH; Chua CK; Leong KF; Naing MW; Cheah CM
    Proc Inst Mech Eng H; 2005 May; 219(3):183-94. PubMed ID: 15934394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites.
    Yu H; Matthew HW; Wooley PH; Yang SY
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local deformation behavior of surface porous polyether-ether-ketone.
    Evans NT; Torstrick FB; Safranski DL; Guldberg RE; Gall K
    J Mech Behav Biomed Mater; 2017 Jan; 65():522-532. PubMed ID: 27694015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process.
    García-González CA; Vega-González A; López-Periago AM; Subra-Paternault P; Domingo C
    Acta Biomater; 2009 May; 5(4):1094-103. PubMed ID: 19041288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.