These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3800020)

  • 1. Changes in anterior fontanel pressure during cardiopulmonary bypass and hypothermic circulatory arrest in infants.
    Friesen RH; Thieme R
    Anesth Analg; 1987 Jan; 66(1):94-6. PubMed ID: 3800020
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of cardiopulmonary bypass and profound hypothermic circulatory arrest on anterior fontanel pressure in infants.
    Stow PJ; Burrows FA; McLeod ME; Coles JG
    Can J Anaesth; 1987 Sep; 34(5):450-4. PubMed ID: 3664911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral oxygen supply and utilization during infant cardiac surgery.
    du Plessis AJ; Newburger J; Jonas RA; Hickey P; Naruse H; Tsuji M; Walsh A; Walter G; Wypij D; Volpe JJ
    Ann Neurol; 1995 Apr; 37(4):488-97. PubMed ID: 7717685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep hypothermic circulatory arrest: current status and indications.
    Jonas RA
    Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2002; 5():76-88. PubMed ID: 11994867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open repair of cardiac defects in neonates and young infants.
    Jonas RA; Lang P
    Clin Perinatol; 1988 Sep; 15(3):659-80. PubMed ID: 3066556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Abdul-Khaliq H; Troitzsch D
    Thorac Cardiovasc Surg; 2003 Feb; 51(1):52-3. PubMed ID: 12587092
    [No Abstract]   [Full Text] [Related]  

  • 7. Techniques to avoid circulatory arrest in neonates undergoing repair of complex heart defects.
    Reddy VM; Hanley FL
    Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2001; 4():277-80. PubMed ID: 11460991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role for deep hypothermic circulatory arrest during repair of heart defects in infants.
    Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Aug; 120(2):425-6. PubMed ID: 10917973
    [No Abstract]   [Full Text] [Related]  

  • 9. Anterior fontanel pressure and visual evoked potentials in neonates and infants undergoing profound hypothermic circulatory arrest.
    Burrows FA; Hillier SC; McLeod ME; Iron KS; Taylor MJ
    Anesthesiology; 1990 Oct; 73(4):632-6. PubMed ID: 2221431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial Doppler monitoring of cerebral perfusion during cardiopulmonary bypass.
    Burrows FA
    Ann Thorac Surg; 1993 Dec; 56(6):1482-4. PubMed ID: 8267473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arch reconstruction without circulatory arrest: historical perspectives and initial clinical results.
    Asou T
    Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2002; 5():89-94. PubMed ID: 11994868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Boston Circulatory Arrest Study: an analysis.
    Ungerleider RM; Gaynor JW
    J Thorac Cardiovasc Surg; 2004 May; 127(5):1256-61. PubMed ID: 15115980
    [No Abstract]   [Full Text] [Related]  

  • 13. [Intracardiac surgery in infants under 3 months: technic of cardiopulmonary bypass and myocardial protection].
    Yokota M; Kyoku I; Kitano M; Shimada I; Mizuhara H; Sakamoto K; Aoshima M; Muraoka R
    Kyobu Geka; 1987 Jul; 40(8):638-45. PubMed ID: 3656832
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A
    J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral monitoring of somatosensory evoked potentials during profoundly hypothermic circulatory arrest.
    Coles JG; Taylor MJ; Pearce JM; Lowry NJ; Stewart DJ; Trusler GA; Williams WG
    Circulation; 1984 Sep; 70(3 Pt 2):I96-102. PubMed ID: 6744573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympathoadrenal function during cardiac operations in infants with the technique of surface cooling, limited cardiopulmonary bypass, and circulatory arrest.
    Firmin RK; Bouloux P; Allen P; Lima RC; Lincoln JC
    J Thorac Cardiovasc Surg; 1985 Nov; 90(5):729-35. PubMed ID: 4058045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circulatory arrest and renal function in open-heart surgery on infants.
    Dittrich S; Priesemann M; Fischer T; Boettcher W; Müller C; Alexi-Meskishvili V; Lange PE
    Pediatr Cardiol; 2002; 23(1):15-9. PubMed ID: 11922502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs.
    Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using reagent-supported thromboelastometry (ROTEM) to monitor haemostatic changes in congenital heart surgery employing deep hypothermic circulatory arrest.
    Straub A; Schiebold D; Wendel HP; Hamilton C; Wagner T; Schmid E; Dietz K; Ziemer G
    Eur J Cardiothorac Surg; 2008 Sep; 34(3):641-7. PubMed ID: 18579398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest.
    Cho DG; Mulloy MR; Chang PA; Johnson MD; Aharon AS; Robison TA; Buckles TL; Byrne DW; Drinkwater DC
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1033-40. PubMed ID: 15052200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.