BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38000219)

  • 1. Integrating PET chemical recycling with pyrolysis of mixed plastic waste via pressureless alkaline depolymerization in a hydrocarbon solvent.
    Konarova M; Batalha N; Fraga G; Ahmed MHM; Pratt S; Laycock B
    Waste Manag; 2024 Feb; 174():24-30. PubMed ID: 38000219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Simultaneous and Selective Depolymerization of Heterogeneous Streams of Polyethylene Terephthalate and Polycarbonate: Towards Industrially Feasible Chemical Recycling.
    Rubio Arias JJ; Barnard E; Thielemans W
    ChemSusChem; 2022 Aug; 15(15):e202200625. PubMed ID: 35699250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical and environmental assessment of laboratory scale approach for sustainable management of marine plastic litter.
    Veksha A; Ahamed A; Wu XY; Liang L; Chan WP; Giannis A; Lisak G
    J Hazard Mater; 2022 Jan; 421():126717. PubMed ID: 34339992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis.
    Darzi R; Dubowski Y; Posmanik R
    Waste Manag; 2022 Apr; 143():223-231. PubMed ID: 35279014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis of mixed engineering plastics: Economic challenges for automotive plastic waste.
    Stallkamp C; Hennig M; Volk R; Stapf D; Schultmann F
    Waste Manag; 2024 Mar; 176():105-116. PubMed ID: 38277808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic fast pyrolysis of polyethylene terephthalate plastic for the selective production of terephthalonitrile under ammonia atmosphere.
    Xu L; Zhang LY; Song H; Dong Q; Dong GH; Kong X; Fang Z
    Waste Manag; 2019 Jun; 92():97-106. PubMed ID: 31160031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.
    Wang CQ; Wang H; Liu YN
    Waste Manag; 2015 Jan; 35():42-7. PubMed ID: 25449606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid.
    Yang W; Liu R; Li C; Song Y; Hu C
    Waste Manag; 2021 Nov; 135():267-274. PubMed ID: 34555688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles.
    Kaabel S; Arciszewski J; Borchers TH; Therien JPD; Friščić T; Auclair K
    ChemSusChem; 2023 Jan; 16(1):e202201613. PubMed ID: 36165763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model analysis on effect of temperature on the solubility of recycling of Polyethylene Terephthalate (PET) plastic.
    Karim SS; Farrukh S; Matsuura T; Ahsan M; Hussain A; Shakir S; Chuah LF; Hasan M; Bokhari A
    Chemosphere; 2022 Nov; 307(Pt 3):136050. PubMed ID: 35977561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of polyethylene terephthalate waste into high-yield porous carbon adsorbent via pyrolysis of dipotassium terephthalate.
    Efimov MN; Vasilev AA; Muratov DG; Kostev AI; Kolesnikov EA; Kiseleva SG; Karpacheva GP
    Waste Manag; 2023 May; 162():113-122. PubMed ID: 36965449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the potential of clay catalysts in catalytic pyrolysis of mixed plastic waste for fuel and energy recovery.
    Cai W; Kumar R; Zheng Y; Zhu Z; Wong JWC; Zhao J
    Heliyon; 2023 Dec; 9(12):e23140. PubMed ID: 38076152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of mixed plastic waste: Predicting the product yields.
    Genuino HC; Pilar Ruiz M; Heeres HJ; Kersten SRA
    Waste Manag; 2023 Feb; 156():208-215. PubMed ID: 36493664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor.
    Bhatt KP; Patel S; Upadhyay DS; Patel RN
    J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconstructed Plastic Substrate Preferences of Microbial Populations from the Natural Environment.
    Putman LI; Schaerer LG; Wu R; Kulas DG; Zolghadr A; Ong RG; Shonnard DR; Techtmann SM
    Microbiol Spectr; 2023 Aug; 11(4):e0036223. PubMed ID: 37260392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals.
    Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT
    J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.