These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 38000256)
1. An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training. Ravi D; ; Barkhof F; Alexander DC; Puglisi L; Parker GJM; Eshaghi A Med Image Anal; 2024 Jan; 91():103033. PubMed ID: 38000256 [TBL] [Abstract][Full Text] [Related]
2. A k-Space Model of Movement Artefacts: Application to Segmentation Augmentation and Artefact Removal. Shaw R; Sudre CH; Varsavsky T; Ourselin S; Cardoso MJ IEEE Trans Med Imaging; 2020 Sep; 39(9):2881-2892. PubMed ID: 32149627 [TBL] [Abstract][Full Text] [Related]
3. Automatic detection of Gibbs artefact in MR images with transfer learning approach. Kocet L; Romarič K; Žibert J Technol Health Care; 2023; 31(1):239-246. PubMed ID: 36120746 [TBL] [Abstract][Full Text] [Related]
4. Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning. Oksuz I; Ruijsink B; Puyol-Antón E; Clough JR; Cruz G; Bustin A; Prieto C; Botnar R; Rueckert D; Schnabel JA; King AP Med Image Anal; 2019 Jul; 55():136-147. PubMed ID: 31055126 [TBL] [Abstract][Full Text] [Related]
5. Improving MR image quality with a multi-task model, using convolutional losses. Simkó A; Ruiter S; Löfstedt T; Garpebring A; Nyholm T; Bylund M; Jonsson J BMC Med Imaging; 2023 Oct; 23(1):148. PubMed ID: 37784039 [TBL] [Abstract][Full Text] [Related]
6. Brain MRI artefact detection and correction using convolutional neural networks. Oksuz I Comput Methods Programs Biomed; 2021 Feb; 199():105909. PubMed ID: 33373815 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of motion artefact reduction depending on the artefacts' directions in head MRI using conditional generative adversarial networks. Usui K; Muro I; Shibukawa S; Goto M; Ogawa K; Sakano Y; Kyogoku S; Daida H Sci Rep; 2023 May; 13(1):8526. PubMed ID: 37237139 [TBL] [Abstract][Full Text] [Related]
8. Differential privacy preserved federated transfer learning for multi-institutional Shiri I; Salimi Y; Maghsudi M; Jenabi E; Harsini S; Razeghi B; Mostafaei S; Hajianfar G; Sanaat A; Jafari E; Samimi R; Khateri M; Sheikhzadeh P; Geramifar P; Dadgar H; Bitrafan Rajabi A; Assadi M; Bénard F; Vafaei Sadr A; Voloshynovskiy S; Mainta I; Uribe C; Rahmim A; Zaidi H Eur J Nucl Med Mol Imaging; 2023 Dec; 51(1):40-53. PubMed ID: 37682303 [TBL] [Abstract][Full Text] [Related]
9. Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics. Vakli P; Weiss B; Szalma J; Barsi P; Gyuricza I; Kemenczky P; Somogyi E; Nárai Á; Gál V; Hermann P; Vidnyánszky Z Med Image Anal; 2023 Aug; 88():102850. PubMed ID: 37263108 [TBL] [Abstract][Full Text] [Related]
10. Towards a unified approach for unsupervised brain MRI Motion Artefact Detection with few shot Anomaly Detection. Belton N; Hagos MT; Lawlor A; Curran KM Comput Med Imaging Graph; 2024 Jul; 115():102391. PubMed ID: 38718561 [TBL] [Abstract][Full Text] [Related]
11. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. Tamburro G; Fiedler P; Stone D; Haueisen J; Comani S PeerJ; 2018; 6():e4380. PubMed ID: 29492336 [TBL] [Abstract][Full Text] [Related]
12. Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia. Ravi D; Blumberg SB; Ingala S; Barkhof F; Alexander DC; Oxtoby NP; Med Image Anal; 2022 Jan; 75():102257. PubMed ID: 34731771 [TBL] [Abstract][Full Text] [Related]
13. An Unsupervised Method for Artefact Removal in EEG Signals. Mur A; Dormido R; Duro N Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109062 [TBL] [Abstract][Full Text] [Related]
15. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection. Hermans T; Smets L; Lemmens K; Dereymaeker A; Jansen K; Naulaers G; Zappasodi F; Van Huffel S; Comani S; De Vos M J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36791462 [No Abstract] [Full Text] [Related]
16. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks. Ahmad B; Sun J; You Q; Palade V; Mao Z Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433 [TBL] [Abstract][Full Text] [Related]
17. Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data. Samper-González J; Burgos N; Bottani S; Fontanella S; Lu P; Marcoux A; Routier A; Guillon J; Bacci M; Wen J; Bertrand A; Bertin H; Habert MO; Durrleman S; Evgeniou T; Colliot O; ; Neuroimage; 2018 Dec; 183():504-521. PubMed ID: 30130647 [TBL] [Abstract][Full Text] [Related]
18. Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data. Loizillon S; Bottani S; Maire A; Ströer S; Dormont D; Colliot O; Burgos N; ; Med Image Anal; 2024 Apr; 93():103073. PubMed ID: 38176355 [TBL] [Abstract][Full Text] [Related]
19. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426 [TBL] [Abstract][Full Text] [Related]
20. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans. Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J Elife; 2022 Dec; 11():. PubMed ID: 36546674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]