These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38000421)

  • 41. Intermittent decoherence blockade in a chiral ring environment.
    Lorenzo S; Longhi S; Cabot A; Zambrini R; Giorgi GL
    Sci Rep; 2021 Jun; 11(1):12834. PubMed ID: 34145329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-Markovianity of qubit evolution under the action of spin environment.
    Chakraborty S; Mallick A; Mandal D; Goyal SK; Ghosh S
    Sci Rep; 2019 Feb; 9(1):2987. PubMed ID: 30814544
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantum non-Markovianity: characterization, quantification and detection.
    Rivas Á; Huelga SF; Plenio MB
    Rep Prog Phys; 2014 Sep; 77(9):094001. PubMed ID: 25147025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chiral excitation and effective bandwidth enhancement in tilted waveguide lattices.
    Longhi S
    Opt Lett; 2020 Dec; 45(24):6667-6670. PubMed ID: 33325866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation technique of quantum optical emission process from multiple two-level atoms based on classical numerical method.
    Taniyama H; Sumikura H; Notomi M
    Opt Express; 2019 Apr; 27(9):12070-12079. PubMed ID: 31052752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantifying non-Markovianity for a chromophore-qubit pair in a super-Ohmic bath.
    Liu J; Sun K; Wang X; Zhao Y
    Phys Chem Chem Phys; 2015 Mar; 17(12):8087-96. PubMed ID: 25729785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency tunable single photon diode based on giant atom coupling to a waveguide.
    Cai G; Lu Y; Ma XS; Cheng MT; Huang X
    Opt Express; 2023 Sep; 31(20):33015-33025. PubMed ID: 37859090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of photon storage fidelity in ordered atomic arrays.
    Manzoni MT; Moreno-Cardoner M; Asenjo-Garcia A; Porto JV; Gorshkov AV; Chang DE
    New J Phys; 2018; 20():. PubMed ID: 31555054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deterministic Free-Space Source of Single Photons Using Rydberg Atoms.
    Petrosyan D; Mølmer K
    Phys Rev Lett; 2018 Sep; 121(12):123605. PubMed ID: 30296151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity.
    Yu S; Wang YT; Ke ZJ; Liu W; Meng Y; Li ZP; Zhang WH; Chen G; Tang JS; Li CF; Guo GC
    Phys Rev Lett; 2018 Feb; 120(6):060406. PubMed ID: 29481228
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Collective excitation of Rydberg-atom ensembles beyond the superatom model.
    Gärttner M; Whitlock S; Schönleber DW; Evers J
    Phys Rev Lett; 2014 Dec; 113(23):233002. PubMed ID: 25526126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Collective Radiation of a Cascaded Quantum System: From Timed Dicke States to Inverted Ensembles.
    Liedl C; Pucher S; Tebbenjohanns F; Schneeweiss P; Rauschenbeutel A
    Phys Rev Lett; 2023 Apr; 130(16):163602. PubMed ID: 37154641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A subradiant optical mirror formed by a single structured atomic layer.
    Rui J; Wei D; Rubio-Abadal A; Hollerith S; Zeiher J; Stamper-Kurn DM; Gross C; Bloch I
    Nature; 2020 Jul; 583(7816):369-374. PubMed ID: 32669699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Environment-Assisted Quantum Transport in a 10-qubit Network.
    Maier C; Brydges T; Jurcevic P; Trautmann N; Hempel C; Lanyon BP; Hauke P; Blatt R; Roos CF
    Phys Rev Lett; 2019 Feb; 122(5):050501. PubMed ID: 30821993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between quantum speed limit time and memory time in a photonic-band-gap environment.
    Wang J; Wu YN; Mo ML; Zhang HZ
    Sci Rep; 2016 Dec; 6():39110. PubMed ID: 28008937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fusing atomic W states via quantum Zeno dynamics.
    Ji YQ; Shao XQ; Yi XX
    Sci Rep; 2017 May; 7(1):1378. PubMed ID: 28469164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-Markovianity between Site Pairs in FMO Complex Using Discrete-Time Quantum Jump Model.
    Kundu M; Chandrashekar CM
    ACS Omega; 2022 Dec; 7(51):48067-48074. PubMed ID: 36591116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlling photons by phonons via giant atom in a waveguide QED setup.
    Li X; Zhao W; Wang Z
    Opt Lett; 2023 Jul; 48(13):3595-3598. PubMed ID: 37390189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide.
    Mitsch R; Sayrin C; Albrecht B; Schneeweiss P; Rauschenbeutel A
    Nat Commun; 2014 Dec; 5():5713. PubMed ID: 25502565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.