These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Numerical Modeling of Viscoelasticity in Particle Suspensions Using the Discrete Element Method. Zubov A; Wilson JF; Kroupa M; Šoóš M; Kosek J Langmuir; 2019 Oct; 35(39):12754-12764. PubMed ID: 31490697 [TBL] [Abstract][Full Text] [Related]
25. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Marschall TA; Teitel S Phys Rev E; 2019 Sep; 100(3-1):032906. PubMed ID: 31639991 [TBL] [Abstract][Full Text] [Related]
26. Rheology of cubic particles suspended in a Newtonian fluid. Cwalina CD; Harrison KJ; Wagner NJ Soft Matter; 2016 May; 12(20):4654-65. PubMed ID: 27112791 [TBL] [Abstract][Full Text] [Related]
27. Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows. McDonnell AG; Gopesh TC; Lo J; O'Bryan M; Yeo LY; Friend JR; Prabhakar R Soft Matter; 2015 Jun; 11(23):4658-68. PubMed ID: 25969844 [TBL] [Abstract][Full Text] [Related]
28. Extensional rheological data from ex-situ measurements for predicting porous media behaviour of the viscoelastic EOR polymers. Azad MS; Trivedi JJ Data Brief; 2018 Oct; 20():293-305. PubMed ID: 30167437 [TBL] [Abstract][Full Text] [Related]
29. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
30. Film flow of a suspension down an inclined plane. Li X; Pozrikidis C Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):847-69. PubMed ID: 12804218 [TBL] [Abstract][Full Text] [Related]
31. A microparticle blood analogue suspension matching blood rheology. Carneiro J; Lima R; Campos JBLM; Miranda JM Soft Matter; 2021 Apr; 17(14):3963-3974. PubMed ID: 33724275 [TBL] [Abstract][Full Text] [Related]
32. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Genovese DB Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831 [TBL] [Abstract][Full Text] [Related]
33. Analytical Solutions for Simple Turbulent Shear Flows on a Basis of a Generalized Newton's Law. Nikushchenko D; Pavlovsky V; Nikushchenko E Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015565 [TBL] [Abstract][Full Text] [Related]
34. Systematic derivation of hydrodynamic equations for viscoelastic phase separation. Spiller D; Brunk A; Habrich O; Egger H; Lukáčová-Medvid'ová M; Dünweg B J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34153954 [TBL] [Abstract][Full Text] [Related]
35. The flow of power law fluids in elastic networks and porous media. Sochi T Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):324-329. PubMed ID: 25908387 [TBL] [Abstract][Full Text] [Related]
36. A new continuum model for suspensions of gyrotactic micro-organisms. Pedley TJ; Kessler JO J Fluid Mech; 1990 Mar; 212():155-82. PubMed ID: 11537107 [TBL] [Abstract][Full Text] [Related]
37. Rheology and contact lifetimes in dense granular flows. Silbert LE; Grest GS; Brewster R; Levine AJ Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867 [TBL] [Abstract][Full Text] [Related]
38. Three-sphere swimmer in a nonlinear viscoelastic medium. Curtis MP; Gaffney EA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043006. PubMed ID: 23679512 [TBL] [Abstract][Full Text] [Related]