These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38000595)
1. Chemical protein synthesis enabled engineering of saccharide oxidative cleavage activity in artificial metalloenzymes. Luo J; He C Int J Biol Macromol; 2024 Jan; 256(Pt 1):128083. PubMed ID: 38000595 [TBL] [Abstract][Full Text] [Related]
2. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase. Liu Y; Harnden KA; Van Stappen C; Dikanov SA; Lu Y Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2308286120. PubMed ID: 37844252 [TBL] [Abstract][Full Text] [Related]
3. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Munzone A; Eijsink VGH; Berrin JG; Bissaro B Nat Rev Chem; 2024 Feb; 8(2):106-119. PubMed ID: 38200220 [TBL] [Abstract][Full Text] [Related]
4. Copper Complexes as Bioinspired Models for Lytic Polysaccharide Monooxygenases. Concia AL; Beccia MR; Orio M; Ferre FT; Scarpellini M; Biaso F; Guigliarelli B; Réglier M; Simaan AJ Inorg Chem; 2017 Feb; 56(3):1023-1026. PubMed ID: 28060494 [TBL] [Abstract][Full Text] [Related]
5. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications. Ipsen JØ; Hallas-Møller M; Brander S; Lo Leggio L; Johansen KS Biochem Soc Trans; 2021 Feb; 49(1):531-540. PubMed ID: 33449071 [TBL] [Abstract][Full Text] [Related]
6. A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases. Hall KR; Joseph C; Ayuso-Fernández I; Tamhankar A; Rieder L; Skaali R; Golten O; Neese F; Røhr ÅK; Jannuzzi SAV; DeBeer S; Eijsink VGH; Sørlie M J Am Chem Soc; 2023 Aug; 145(34):18888-18903. PubMed ID: 37584157 [TBL] [Abstract][Full Text] [Related]
7. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
8. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H Bissaro B; Røhr ÅK; Müller G; Chylenski P; Skaugen M; Forsberg Z; Horn SJ; Vaaje-Kolstad G; Eijsink VGH Nat Chem Biol; 2017 Oct; 13(10):1123-1128. PubMed ID: 28846668 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases. Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229 [TBL] [Abstract][Full Text] [Related]
13. Oxidative Cleavage of Glycosidic Bonds by Synthetic Mimics of Lytic Polysaccharide Monooxygenases. Chen K; Zangiabadi M; Zhao Y Org Lett; 2022 May; 24(18):3426-3430. PubMed ID: 35503979 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721 [TBL] [Abstract][Full Text] [Related]
15. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Wang B; Zhang X; Fang W; Rovira C; Shaik S Acc Chem Res; 2022 Aug; 55(16):2280-2290. PubMed ID: 35926175 [TBL] [Abstract][Full Text] [Related]
16. Decoding the Ambiguous Electron Paramagnetic Resonance Signals in the Lytic Polysaccharide Monooxygenase from Gómez-Piñeiro RJ; Drosou M; Bertaina S; Decroos C; Simaan AJ; Pantazis DA; Orio M Inorg Chem; 2022 May; 61(20):8022-8035. PubMed ID: 35549254 [TBL] [Abstract][Full Text] [Related]
18. Following the Fate of Lytic Polysaccharide Monooxygenases under Oxidative Conditions by NMR Spectroscopy. Christensen IA; Eijsink VGH; Stepnov AA; Courtade G; Aachmann FL Biochemistry; 2023 Jun; 62(12):1976-1993. PubMed ID: 37255464 [TBL] [Abstract][Full Text] [Related]
19. Peptide-based chemical models for lytic polysaccharide monooxygenases. Hassoon AA; Szorcsik A; Fülöp L; Papp ZI; May NV; Gajda T Dalton Trans; 2022 Nov; 51(45):17241-17254. PubMed ID: 36314721 [TBL] [Abstract][Full Text] [Related]
20. How to Build a Metalloenzyme: Lessons from a Protein-Based Model of Acetyl Coenzyme A Synthase. Shafaat HS; Manesis AC; Yerbulekova A Acc Chem Res; 2023 May; 56(9):984-993. PubMed ID: 37042748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]