BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 38001035)

  • 1. Karrikin signalling: impacts on plant development and abiotic stress tolerance.
    Kamran M; Melville KT; Waters MT
    J Exp Bot; 2024 Feb; 75(4):1174-1186. PubMed ID: 38001035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Karrikin perception and signalling.
    Waters MT; Nelson DC
    New Phytol; 2023 Mar; 237(5):1525-1541. PubMed ID: 36333982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses.
    Yang T; Lian Y; Wang C
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31842355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.
    Waters MT; Nelson DC; Scaffidi A; Flematti GR; Sun YK; Dixon KW; Smith SM
    Development; 2012 Apr; 139(7):1285-95. PubMed ID: 22357928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon.
    Meng Y; Varshney K; Incze N; Badics E; Kamran M; Davies SF; Oppermann LMF; Magne K; Dalmais M; Bendahmane A; Sibout R; Vogel J; Laudencia-Chingcuanco D; Bond CS; Soós V; Gutjahr C; Waters MT
    Plant J; 2022 Mar; 109(6):1559-1574. PubMed ID: 34953105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
    Carbonnel S; Torabi S; Griesmann M; Bleek E; Tang Y; Buchka S; Basso V; Shindo M; Boyer FD; Wang TL; Udvardi M; Waters MT; Gutjahr C
    PLoS Genet; 2020 Dec; 16(12):e1009249. PubMed ID: 33370251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors.
    Varshney K; Gutjahr C
    Plant Cell Physiol; 2023 Sep; 64(9):984-995. PubMed ID: 37548562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The karrikin signaling regulator SMAX1 controls
    Carbonnel S; Das D; Varshney K; Kolodziej MC; Villaécija-Aguilar JA; Gutjahr C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21757-21765. PubMed ID: 32817510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desmethyl butenolides are optimal ligands for karrikin receptor proteins.
    Yao J; Scaffidi A; Meng Y; Melville KT; Komatsu A; Khosla A; Nelson DC; Kyozuka J; Flematti GR; Waters MT
    New Phytol; 2021 May; 230(3):1003-1016. PubMed ID: 33474738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional redundancy in the control of seedling growth by the karrikin signaling pathway.
    Stanga JP; Morffy N; Nelson DC
    Planta; 2016 Jun; 243(6):1397-406. PubMed ID: 26754282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.
    Wang L; Waters MT; Smith SM
    New Phytol; 2018 Jul; 219(2):605-618. PubMed ID: 29726620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana.
    Swarbreck SM; Guerringue Y; Matthus E; Jamieson FJC; Davies JM
    Plant J; 2019 May; 98(4):607-621. PubMed ID: 30659713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of strigolactone and karrikin signaling in plants.
    Wang Q; Smith SM; Huang J
    Trends Plant Sci; 2022 May; 27(5):450-459. PubMed ID: 34876337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The karrikin response system of Arabidopsis.
    Waters MT; Scaffidi A; Sun YK; Flematti GR; Smith SM
    Plant J; 2014 Aug; 79(4):623-31. PubMed ID: 24433542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling and responses to strigolactones and karrikins.
    Smith SM; Li J
    Curr Opin Plant Biol; 2014 Oct; 21():23-29. PubMed ID: 24996032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.
    Waters MT; Smith SM
    Mol Plant; 2013 Jan; 6(1):63-75. PubMed ID: 23142794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues.
    Bythell-Douglas R; Rothfels CJ; Stevenson DWD; Graham SW; Wong GK; Nelson DC; Bennett T
    BMC Biol; 2017 Jun; 15(1):52. PubMed ID: 28662667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origins and mechanisms of karrikin signalling.
    Waters MT; Scaffidi A; Flematti GR; Smith SM
    Curr Opin Plant Biol; 2013 Oct; 16(5):667-73. PubMed ID: 23954000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14.
    Zhao LH; Zhou XE; Wu ZS; Yi W; Xu Y; Li S; Xu TH; Liu Y; Chen RZ; Kovach A; Kang Y; Hou L; He Y; Xie C; Song W; Zhong D; Xu Y; Wang Y; Li J; Zhang C; Melcher K; Xu HE
    Cell Res; 2013 Mar; 23(3):436-9. PubMed ID: 23381136
    [No Abstract]   [Full Text] [Related]  

  • 20. Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis.
    Wang L; Xu Q; Yu H; Ma H; Li X; Yang J; Chu J; Xie Q; Wang Y; Smith SM; Li J; Xiong G; Wang B
    Plant Cell; 2020 Jul; 32(7):2251-2270. PubMed ID: 32358074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.