These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38001175)

  • 1. High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates.
    Benman W; Datta S; Gonzalez-Martinez D; Lee G; Hooper J; Qian G; Leavitt G; Salloum L; Ho G; Mhatre S; Magaraci MS; Patterson M; Mannickarottu SG; Malani S; Avalos JL; Chow BY; Bugaj LJ
    Commun Biol; 2023 Nov; 6(1):1192. PubMed ID: 38001175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput multicolor optogenetics in microwell plates.
    Bugaj LJ; Lim WA
    Nat Protoc; 2019 Jul; 14(7):2205-2228. PubMed ID: 31235951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated calibration of optoPlate LEDs to reduce light dose variation in optogenetic experiments.
    Grødem EO; Sweeney K; McClean MN
    Biotechniques; 2020 Oct; 69(4):313-316. PubMed ID: 32722938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platforms for Optogenetic Stimulation and Feedback Control.
    Kumar S; Khammash M
    Front Bioeng Biotechnol; 2022; 10():918917. PubMed ID: 35757811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiology-Based Closed Loop Optogenetic Brain Stimulation Devices: Recent Developments and Future Prospects.
    Kumari LS; Kouzani AZ
    IEEE Rev Biomed Eng; 2023; 16():91-108. PubMed ID: 34995192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro.
    Harmer ZP; McClean MN
    J Vis Exp; 2023 Aug; (198):. PubMed ID: 37590537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building a Simple and Versatile Illumination System for Optogenetic Experiments.
    Kyriakakis P; Fernandez de Cossio L; Howard PW; Kouv S; Catanho M; Hu VJ; Kyriakakis R; Allen ME; Ma Y; Aguilar-Rivera M; Coleman TP
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LITOS: a versatile LED illumination tool for optogenetic stimulation.
    Höhener TC; Landolt AE; Dessauges C; Hinderling L; Gagliardi PA; Pertz O
    Sci Rep; 2022 Jul; 12(1):13139. PubMed ID: 35907941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro validation of a closed-loop optogenetic stimulation device.
    Edward ES; Kouzani AZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1130-1133. PubMed ID: 29060074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIY optogenetics: Building, programming, and using the Light Plate Apparatus.
    Gerhardt KP; Castillo-Hair SM; Tabor JJ
    Methods Enzymol; 2019; 624():197-226. PubMed ID: 31370930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing high-throughput optogenetics: Integration of LITOS with Lustro enables simultaneous light stimulation and shaking.
    Harmer ZP; Höhener TC; Landolt AE; Mitchell C; McClean M
    MicroPubl Biol; 2024; 2024():. PubMed ID: 38371319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.
    Nuñez I; Matute T; Herrera R; Keymer J; Marzullo T; Rudge T; Federici F
    PLoS One; 2017; 12(11):e0187163. PubMed ID: 29140977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Optical Investigation of Cardiac Electrophysiology by Parallel Detection in Multiwell Plates.
    Credi C; Balducci V; Munagala U; Cianca C; Bigiarini S; de Vries AAF; Loew LM; Pavone FS; Cerbai E; Sartiani L; Sacconi L
    Front Physiol; 2021; 12():692496. PubMed ID: 34539428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
    Milias-Argeitis A; Rullan M; Aoki SK; Buchmann P; Khammash M
    Nat Commun; 2016 Aug; 7():12546. PubMed ID: 27562138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Open-Source Plate Reader.
    Szymula KP; Magaraci MS; Patterson M; Clark A; Mannickarottu SG; Chow BY
    Biochemistry; 2019 Feb; 58(6):468-473. PubMed ID: 30511843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo.
    Bolus MF; Willats AA; Whitmire CJ; Rozell CJ; Stanley GB
    J Neural Eng; 2018 Apr; 15(2):026011. PubMed ID: 29300002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.