These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 38001326)
1. An integrative clinical and CT-based tumoral/peritumoral radiomics nomogram to predict the microsatellite instability in rectal carcinoma. Ma Y; Xu X; Lin Y; Li J; Yuan H Abdom Radiol (NY); 2024 Mar; 49(3):783-790. PubMed ID: 38001326 [TBL] [Abstract][Full Text] [Related]
2. A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma. Yuan H; Peng Y; Xu X; Tu S; Wei Y; Ma Y Cancer Manag Res; 2022; 14():2409-2418. PubMed ID: 35971393 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer. Ying M; Pan J; Lu G; Zhou S; Fu J; Wang Q; Wang L; Hu B; Wei Y; Shen J BMC Cancer; 2022 May; 22(1):524. PubMed ID: 35534797 [TBL] [Abstract][Full Text] [Related]
4. Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer. Pei Q; Yi X; Chen C; Pang P; Fu Y; Lei G; Chen C; Tan F; Gong G; Li Q; Zai H; Chen BT Eur Radiol; 2022 Jan; 32(1):714-724. PubMed ID: 34258636 [TBL] [Abstract][Full Text] [Related]
5. The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma. Yuan H; Xu X; Tu S; Chen B; Wei Y; Ma Y BMC Gastroenterol; 2022 Nov; 22(1):463. PubMed ID: 36384504 [TBL] [Abstract][Full Text] [Related]
6. Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer. Chen X; Zhuang Z; Pen L; Xue J; Zhu H; Zhang L; Wang D Abdom Radiol (NY); 2024 May; 49(5):1363-1375. PubMed ID: 38305796 [TBL] [Abstract][Full Text] [Related]
7. Preoperative prediction of microsatellite instability status in colorectal cancer based on a multiphasic enhanced CT radiomics nomogram model. Bian X; Sun Q; Wang M; Dong H; Dai X; Zhang L; Fan G; Chen G BMC Med Imaging; 2024 Apr; 24(1):77. PubMed ID: 38566000 [TBL] [Abstract][Full Text] [Related]
8. Multiparametric MRI subregion radiomics for preoperative assessment of high-risk subregions in microsatellite instability of rectal cancer patients: a multicenter study. Cai Z; Xu Z; Chen Y; Zhang R; Guo B; Chen H; Ouyang F; Chen X; Chen X; Liu D; Luo C; Li X; Liu W; Zhou C; Guan X; Liu Z; Zhao H; Hu Q Int J Surg; 2024 Jul; 110(7):4310-4319. PubMed ID: 38498392 [TBL] [Abstract][Full Text] [Related]
9. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]
10. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer: Study Protocol Clinical Trial (SPIRIT Compliant). Huang Z; Zhang W; He D; Cui X; Tian S; Yin H; Song B Medicine (Baltimore); 2020 Mar; 99(10):e19428. PubMed ID: 32150094 [TBL] [Abstract][Full Text] [Related]
12. Non-invasive CT radiomic biomarkers predict microsatellite stability status in colorectal cancer: a multicenter validation study. Bodalal Z; Hong EK; Trebeschi S; Kurilova I; Landolfi F; Bogveradze N; Castagnoli F; Randon G; Snaebjornsson P; Pietrantonio F; Lee JM; Beets G; Beets-Tan R Eur Radiol Exp; 2024 Aug; 8(1):98. PubMed ID: 39186200 [TBL] [Abstract][Full Text] [Related]
13. Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation. Golia Pernicka JS; Gagniere J; Chakraborty J; Yamashita R; Nardo L; Creasy JM; Petkovska I; Do RRK; Bates DDB; Paroder V; Gonen M; Weiser MR; Simpson AL; Gollub MJ Abdom Radiol (NY); 2019 Nov; 44(11):3755-3763. PubMed ID: 31250180 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics. Kim S; Lee JH; Park EJ; Lee HS; Baik SH; Jeon TJ; Lee KY; Ryu YH; Kang J Yonsei Med J; 2023 May; 64(5):320-326. PubMed ID: 37114635 [TBL] [Abstract][Full Text] [Related]
15. A multicenter study on the preoperative prediction of gastric cancer microsatellite instability status based on computed tomography radiomics. Liang X; Wu Y; Liu Y; Yu D; Huang C; Li Z Abdom Radiol (NY); 2022 Jun; 47(6):2036-2045. PubMed ID: 35391567 [TBL] [Abstract][Full Text] [Related]
16. Comparison of conventional MRI analysis versus MRI-based radiomics to predict the circumferential margin resection involvement of rectal cancer. Liang H; Ma D; Ma Y; Hang Y; Guan Z; Zhang Y; Wei Y; Wang P; Zhang M BMC Gastroenterol; 2024 Jun; 24(1):209. PubMed ID: 38902675 [TBL] [Abstract][Full Text] [Related]
17. Predicting the WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma Through CT-Based Tumoral and Peritumoral Radiomics. Ma Y; Guan Z; Liang H; Cao H Front Oncol; 2022; 12():831112. PubMed ID: 35237524 [TBL] [Abstract][Full Text] [Related]
18. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Xing X; Li D; Peng J; Shu Z; Zhang Y; Song Q Sci Rep; 2024 May; 14(1):11760. PubMed ID: 38783014 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature. Chen X; He L; Li Q; Liu L; Li S; Zhang Y; Liu Z; Huang Y; Mao Y; Chen X Eur Radiol; 2023 Jan; 33(1):11-22. PubMed ID: 35771245 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of a combined nomogram for predicting perineural invasion status in rectal cancer via computed tomography-based radiomics. Liu J; Sun L; Zhao X; Lu X J Cancer Res Ther; 2023 Dec; 19(6):1552-1559. PubMed ID: 38156921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]