These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 38002125)

  • 1. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens.
    Zhao J; Guo Y; Ma X; Liu S; Sun C; Cai M; Chi Y; Xu K
    Foods; 2023 Nov; 12(22):. PubMed ID: 38002125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review.
    Huang F; Zhang Y; Lin J; Liu Y
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34207580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of nucleic acid-based detection methods for foodborne viruses: Sample pretreatment and detection techniques.
    Kim TY; Zhu X; Kim SM; Lim JA; Woo MA; Lim MC; Luo K
    Food Res Int; 2023 Dec; 174(Pt 1):113502. PubMed ID: 37986417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors.
    Zhang C; Chen J; Sun R; Huang Z; Luo Z; Zhou C; Wu M; Duan Y; Li Y
    ACS Sens; 2020 Oct; 5(10):2977-3000. PubMed ID: 32945653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review.
    Pang L; Pi X; Yang X; Song D; Qin X; Wang L; Man C; Zhang Y; Jiang Y
    Crit Rev Food Sci Nutr; 2024; 64(16):5398-5413. PubMed ID: 36476145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations.
    Law JW; Ab Mutalib NS; Chan KG; Lee LH
    Front Microbiol; 2014; 5():770. PubMed ID: 25628612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy of functional nucleic acids-mediated isothermal amplification for detection of foodborne microbial contaminants: A review.
    Zhou J; Wang TY; Lan Z; Yang HJ; Ye XJ; Min R; Wang ZH; Huang Q; Cao J; Gao YE; Wang WL; Sun XL; Zhang Y
    Food Res Int; 2023 Nov; 173(Pt 1):113286. PubMed ID: 37803599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly sensitive fluorescence biosensor for detection of
    Zhang C; Luo Z; Wu M; Ning W; Tian Z; Duan Y; Li Y
    Analyst; 2021 Oct; 146(21):6528-6536. PubMed ID: 34569562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-Based Approaches for Foodborne Pathogen Detection.
    Zhao X; Li M; Liu Y
    Microorganisms; 2019 Sep; 7(10):. PubMed ID: 31547520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Methods for Identification and Quantification of Foodborne Pathogens.
    Zhang M; Wu J; Shi Z; Cao A; Fang W; Yan D; Wang Q; Li Y
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization chain reaction and its applications in biosensing.
    Wu J; Lv J; Zheng X; Wu ZS
    Talanta; 2021 Nov; 234():122637. PubMed ID: 34364446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors.
    Patil AVP; Yang PF; Yang CY; Gaur MS; Wu CC
    Crit Rev Biomed Eng; 2024; 52(3):17-40. PubMed ID: 38523439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors.
    Chen Z; Liu Z; Liu J; Xiao X
    Biotechnol Bioeng; 2023 Dec; 120(12):3501-3517. PubMed ID: 37723667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aptamer biosensor based dual signal amplification system for the detection of salmonella typhimurium.
    Li A; Zuo P; Ye BC
    Anal Biochem; 2021 Feb; 615():114050. PubMed ID: 33285125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive detection of Salmonella based on dual-functional HCR-mediated multivalent aptamer and amplification-free CRISPR/Cas12a system.
    Qiao Z; Xue L; Sun M; Zhang M; Chen M; Xu X; Yang W; Wang R
    Anal Chim Acta; 2023 Dec; 1284():341998. PubMed ID: 37996158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-Optic-Based Biosensor as an Innovative Technology for Point-of-Care Testing Detection of Foodborne Pathogenic Bacteria To Defend Food and Agricultural Product Safety.
    Gu R; Duan Y; Li Y; Luo Z
    J Agric Food Chem; 2023 Jul; 71(29):10982-10988. PubMed ID: 37432923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress of biosensors in the detection of foodborne pathogens].
    Xiao F; Liu R; Zhan Z; Zhang G; Wu X; Xu H
    Sheng Wu Gong Cheng Xue Bao; 2019 Sep; 35(9):1581-1589. PubMed ID: 31559741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.
    Li Y; Fan P; Zhou S; Zhang L
    Microb Pathog; 2017 Jun; 107():54-61. PubMed ID: 28323152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced diagnostic methods for identification of bacterial foodborne pathogens: contemporary and upcoming challenges.
    Panwar S; Duggirala KS; Yadav P; Debnath N; Yadav AK; Kumar A
    Crit Rev Biotechnol; 2023 Dec; 43(7):982-1000. PubMed ID: 35994308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications.
    Zeng Z; Zhou R; Sun R; Zhang X; Cheng Z; Chen C; Zhu Q
    Biosens Bioelectron; 2021 Feb; 173():112814. PubMed ID: 33197767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.