BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38002148)

  • 21. Characterization of the Volatile Profiles of Insect Flours by (HS)-SPME/GC-MS: A Preliminary Study.
    Reale S; Biancolillo A; Foschi M; D'Archivio AA
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor.
    Navarro Del Hierro J; Gutiérrez-Docio A; Otero P; Reglero G; Martin D
    Food Chem; 2020 Mar; 309():125742. PubMed ID: 31704068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing.
    Garofalo C; Osimani A; Milanović V; Taccari M; Cardinali F; Aquilanti L; Riolo P; Ruschioni S; Isidoro N; Clementi F
    Food Microbiol; 2017 Apr; 62():15-22. PubMed ID: 27889142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Proteomic- and Bioinformatic-Based Identification of Specific Allergens from Edible Insects: Probes for Future Detection as Food Ingredients.
    Barre A; Pichereaux C; Simplicien M; Burlet-Schiltz O; Benoist H; Rougé P
    Foods; 2021 Jan; 10(2):. PubMed ID: 33573235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive Compounds and Antioxidant Composition of Nut Bars with Addition of Various Edible Insect Flours.
    Gumul D; Oracz J; Kowalski S; Mikulec A; Skotnicka M; Karwowska K; Areczuk A
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folate contents in insects as promising food components quantified by stable isotope dilution.
    Weber N; Kouřimská L; Kulma M; Petříčková D; Seufert F; Rychlik M
    Front Nutr; 2022; 9():970255. PubMed ID: 36159461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of pasteurisation of edible insects using enzymatic tests (activity of alkaline phosphatase and lactoperoxidase) applied in dairy products.
    Grabowski NT; Franco Olivas J; Galván Lozano D; Kehrenberg C; Aguilar DG
    Food Sci Technol Int; 2018 Dec; 24(8):699-704. PubMed ID: 30019591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles.
    Wu RA; Ding Q; Yin L; Chi X; Sun N; He R; Luo L; Ma H; Li Z
    Food Chem; 2020 Apr; 323():126818. PubMed ID: 32330649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-Infrared Reflectance Spectroscopy for Quantitative Analysis of Fat and Fatty Acid Content in Living
    Kröncke N; Neumeister M; Benning R
    Insects; 2023 Jan; 14(2):. PubMed ID: 36835684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market:
    Boulos S; Tännler A; Nyström L
    Front Nutr; 2020; 7():89. PubMed ID: 32754611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The lipids of the common house cricket,Acheta domesticus L. I. Lipid classes and fatty acid distribution.
    Hutchins RF; Martin MM
    Lipids; 1968 May; 3(3):247-9. PubMed ID: 17805864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutritional Characteristics of Selected Insects in Uganda for Use as Alternative Protein Sources in Food and Feed.
    Bbosa T; Tamale Ndagire C; Muzira Mukisa I; Fiaboe KKM; Nakimbugwe D
    J Insect Sci; 2019 Nov; 19(6):. PubMed ID: 31853552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters.
    Zielińska E; Zieliński D; Jakubczyk A; Karaś M; Pankiewicz U; Flasz B; Dziewięcka M; Lewicki S
    Food Chem; 2021 May; 345():128846. PubMed ID: 33601659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of nutritional quality of fourteen wild
    Plaha NS; Kaushik N; Awasthi S; Singh M; Kaur V; Langyan S; Kumar A; Kalia S
    Heliyon; 2023 Nov; 9(11):e21192. PubMed ID: 37928019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbiology of processed edible insect products - Results of a preliminary survey.
    Grabowski NT; Klein G
    Int J Food Microbiol; 2017 Feb; 243():103-107. PubMed ID: 27903420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the Composition of Different Instars of
    Kröncke N; Wittke S; Steinmann N; Benning R
    Insects; 2023 Mar; 14(4):. PubMed ID: 37103125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Substrate on the Nutrient Content and Fatty Acid Composition of Edible Insects.
    Riekkinen K; Väkeväinen K; Korhonen J
    Insects; 2022 Jun; 13(7):. PubMed ID: 35886766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lesser mealworm (Alphitobius diaperinus L.) larvae oils extracted by pure and binary mixed organic solvents: Physicochemical and antioxidant properties, fatty acid composition, and lipid quality indices.
    Mohammad Taghi Gharibzahedi S; Altintas Z
    Food Chem; 2023 May; 408():135209. PubMed ID: 36563624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.
    Oonincx DG; van Itterbeeck J; Heetkamp MJ; van den Brand H; van Loon JJ; van Huis A
    PLoS One; 2010 Dec; 5(12):e14445. PubMed ID: 21206900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra.
    Adámková A; Mlček J; Kouřimská L; Borkovcová M; Bušina T; Adámek M; Bednářová M; Krajsa J
    Int J Environ Res Public Health; 2017 May; 14(5):. PubMed ID: 28498340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.