These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38002364)
1. Assessment of Rheological Models Applied to Blood Flow in Human Thoracic Aorta. Fuchs A; Berg N; Fuchs L; Prahl Wittberg L Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002364 [TBL] [Abstract][Full Text] [Related]
2. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633 [TBL] [Abstract][Full Text] [Related]
3. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Faraji A; Sahebi M; SalavatiDezfouli S Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Caballero AD; Laín S Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1200-1216. PubMed ID: 24559110 [TBL] [Abstract][Full Text] [Related]
5. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry. DiCarlo AL; Holdsworth DW; Poepping TL Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099 [TBL] [Abstract][Full Text] [Related]
6. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438 [TBL] [Abstract][Full Text] [Related]
7. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Box FM; van der Geest RJ; Rutten MC; Reiber JH Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825 [TBL] [Abstract][Full Text] [Related]
8. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta. Soulis JV; Fytanidis DK; Lampri OP; Giannoglou GD Cardiol Res; 2016 Apr; 7(2):66-79. PubMed ID: 28197271 [TBL] [Abstract][Full Text] [Related]
9. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
11. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology? De Nisco G; Lodi Rizzini M; Verardi R; Chiastra C; Candreva A; De Ferrari G; D'Ascenzo F; Gallo D; Morbiducci U Comput Methods Programs Biomed; 2023 Dec; 242():107823. PubMed ID: 37757568 [TBL] [Abstract][Full Text] [Related]
12. Influence of Non-Newtonian Viscosity on Flow Structures and Wall Deformation in Compliant Serpentine Microchannels: A Numerical Study. Deshmukh K; Mitra K; Bit A Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763824 [TBL] [Abstract][Full Text] [Related]
13. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. Lee SW; Steinman DA J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332 [TBL] [Abstract][Full Text] [Related]
14. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Castro MA; Ahumada Olivares MC; Putman CM; Cebral JR Med Biol Eng Comput; 2014 Oct; 52(10):827-39. PubMed ID: 25154981 [TBL] [Abstract][Full Text] [Related]
15. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment. Walker AM; Johnston CR; Rival DE J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783 [TBL] [Abstract][Full Text] [Related]
16. Influence of non-Newtonian behavior of blood on flow in an elastic artery model. Dutta A; Tarbell JM J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082 [TBL] [Abstract][Full Text] [Related]
17. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Abbasian M; Shams M; Valizadeh Z; Moshfegh A; Javadzadegan A; Cheng S Comput Methods Programs Biomed; 2020 Apr; 186():105185. PubMed ID: 31739277 [TBL] [Abstract][Full Text] [Related]
18. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface. Mazzi V; De Nisco G; Calò K; Chiastra C; Daemen J; Steinman DA; Wentzel JJ; Morbiducci U; Gallo D Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707 [TBL] [Abstract][Full Text] [Related]
19. Investigation of pulsatile flowfield in healthy thoracic aorta models. Wen CY; Yang AS; Tseng LY; Chai JW Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715 [TBL] [Abstract][Full Text] [Related]
20. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. Liu X; Fan Y; Deng X; Zhan F J Biomech; 2011 Apr; 44(6):1123-31. PubMed ID: 21310418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]