These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38002388)
21. Pt-Loaded Nb─W Metal Composite Oxide for Selective Cleavage of Secondary C─O Bonds. Chen J; Xia Q; Guo Y; Wang Y; Li X; Wang M; Qiu J; Wang Y; Sofianos MV; Liu S Small; 2023 Nov; 19(48):e2304612. PubMed ID: 37533398 [TBL] [Abstract][Full Text] [Related]
22. Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol. Nimbalkar AS; Oh KR; Han SJ; Yun GN; Cha SH; Upare PP; Awad A; Hwang DW; Hwang YK ChemSusChem; 2024 Feb; 17(3):e202301315. PubMed ID: 37932870 [TBL] [Abstract][Full Text] [Related]
23. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Zhang X; Cui G; Feng H; Chen L; Wang H; Wang B; Zhang X; Zheng L; Hong S; Wei M Nat Commun; 2019 Dec; 10(1):5812. PubMed ID: 31862887 [TBL] [Abstract][Full Text] [Related]
24. Selective Hydrogenolysis of Erythritol over Ir-ReO Gu M; Liu L; Nakagawa Y; Li C; Tamura M; Shen Z; Zhou X; Zhang Y; Tomishige K ChemSusChem; 2021 Jan; 14(2):642-654. PubMed ID: 33084243 [TBL] [Abstract][Full Text] [Related]
25. Influence of Synthesis Conditions on Catalytic Performance of Ni/CeO Jarauta-Córdoba C; García L; Ruiz J; Oliva M; Arauzo J Molecules; 2024 Aug; 29(16):. PubMed ID: 39202877 [TBL] [Abstract][Full Text] [Related]
26. Selective Hydrogenolysis of Glycerol to 1,3-Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WO Zhao X; Wang J; Yang M; Lei N; Li L; Hou B; Miao S; Pan X; Wang A; Zhang T ChemSusChem; 2017 Mar; 10(5):819-824. PubMed ID: 27863052 [TBL] [Abstract][Full Text] [Related]
27. Production of 1,3-propanediol via in situ glycerol hydrogenolysis in aqueous phase reforming using bimetallic W-Ni/CeO Md Radzi MR; Rosli SNA; Yusoff MHM; Abidin SZ Environ Sci Pollut Res Int; 2024 Oct; ():. PubMed ID: 39397235 [TBL] [Abstract][Full Text] [Related]
28. Thermal Modification Effect on Supported Cu-Based Activated Carbon Catalyst in Hydrogenolysis of Glycerol. Seguel J; García R; Chimentão RJ; García-Fierro JL; Ghampson IT; Escalona N; Sepúlveda C Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32013085 [TBL] [Abstract][Full Text] [Related]
29. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO composite catalysts: structural requirements and reaction mechanism. Wang S; Zhang Y; Liu H Chem Asian J; 2010 May; 5(5):1100-11. PubMed ID: 20352611 [TBL] [Abstract][Full Text] [Related]
30. Study of the Glycerol Hydrogenolysis Reaction on Cu, Cu-Zn, and Cu-ZnO Clusters. Singh R; Biswas P; Jha PK ACS Omega; 2022 Sep; 7(37):33629-33636. PubMed ID: 36157784 [TBL] [Abstract][Full Text] [Related]
31. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts. Guo X; Guan J; Li B; Wang X; Mu X; Liu H Sci Rep; 2015 Nov; 5():16451. PubMed ID: 26578426 [TBL] [Abstract][Full Text] [Related]
32. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran with high yield over bimetallic Ru-Co/AC catalysts. Dong Z; Zhang Y; Xia H RSC Adv; 2024 May; 14(21):14982-14991. PubMed ID: 38720989 [TBL] [Abstract][Full Text] [Related]
33. Hydrogenolysis of Furfuryl Alcohol to 1,2-Pentanediol Over Supported Ruthenium Catalysts. Yamaguchi A; Murakami Y; Imura T; Wakita K ChemistryOpen; 2021 Aug; 10(8):731-736. PubMed ID: 34109757 [TBL] [Abstract][Full Text] [Related]
34. Catalytic Transfer Hydrogenolysis of Glycerol over Heterogeneous Catalysts: A Short Review on Mechanistic Studies. Liu X; Yin B; Zhang W; Yu X; Du Y; Zhao S; Zhang G; Liu M; Yan H; Abbotsi-Dogbey M; Al-Absi ST; Yeredil S; Yang C; Shen J; Yan W; Jin X Chem Rec; 2021 Jul; 21(7):1792-1810. PubMed ID: 33973696 [TBL] [Abstract][Full Text] [Related]
35. Kinetic Study of Liquid-Phase Glycerol Hydrodeoxygenation into 1,2-Propanediol over CuPd/TiO Ardila A AN; Arriola-Villaseñor E; Barrera-Zapata R; Hernández J; Fuentes GA ACS Omega; 2023 May; 8(17):14907-14914. PubMed ID: 37151512 [TBL] [Abstract][Full Text] [Related]
36. Catalytic Functionalities of Nano Ruthenium/gamma-Al2O3 Catalysts for the Vapour Phase Hydrogenolysis of Glycerol. Kumar VP; Priya SS; Harikrishna Y; Kumar A; Chary KV J Nanosci Nanotechnol; 2016 Feb; 16(2):1952-60. PubMed ID: 27433708 [TBL] [Abstract][Full Text] [Related]
37. Direct Transformation of Glycerol to Propanal using Zirconium Phosphate-Supported Bimetallic Catalysts. Gong H; Zhou C; Cui Y; Dai S; Zhao X; Luo R; An P; Li H; Wang H; Hou Z ChemSusChem; 2020 Sep; 13(18):4954-4966. PubMed ID: 32666698 [TBL] [Abstract][Full Text] [Related]
38. Hydrogenolysis of biomass-derived sorbitol over La-promoted Ni/ZrO Cai C; Wang H; Xin H; Zhu C; Zhang Q; Zhang X; Wang C; Liu Q; Ma L RSC Adv; 2020 Jan; 10(7):3993-4001. PubMed ID: 35492633 [TBL] [Abstract][Full Text] [Related]
39. Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity. Kang PL; Shi YF; Shang C; Liu ZP Chem Sci; 2022 Jul; 13(27):8148-8160. PubMed ID: 35919423 [TBL] [Abstract][Full Text] [Related]
40. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4. Gupta P; Kumar M; Gupta RP; Puri SK; Ramakumar SSV Chemosphere; 2022 Apr; 292():133426. PubMed ID: 34971623 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]