BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38003154)

  • 1. iTRAQ-Based Phosphoproteomic Analysis Exposes Molecular Changes in the Small Intestinal Epithelia of Cats after
    Zhai B; Meng YM; Xie SC; Peng JJ; Liu Y; Qiu Y; Wang L; Zhang J; He JJ
    Animals (Basel); 2023 Nov; 13(22):. PubMed ID: 38003154
    [No Abstract]   [Full Text] [Related]  

  • 2. iTRAQ-Based Global Phosphoproteomics Reveals Novel Molecular Differences Between
    Wang ZX; Zhou CX; Calderón-Mantilla G; Petsalaki E; He JJ; Song HY; Elsheikha HM; Zhu XQ
    Front Cell Infect Microbiol; 2019; 9():307. PubMed ID: 31508380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection.
    Nie LB; Cong W; He JJ; Zheng WB; Zhu XQ
    Infect Dis Poverty; 2022 Sep; 11(1):96. PubMed ID: 36104766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic RNA profiles in the small intestinal epithelia of cats after Toxoplasma gondii infection.
    Zhai B; Xie SC; Zhang J; He JJ; Zhu XQ
    Infect Dis Poverty; 2023 Jul; 12(1):68. PubMed ID: 37491273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-based phosphoproteomic analysis reveals host cell's specific responses to Toxoplasma gondii at the phases of invasion and prior to egress.
    He C; Kong L; Puthiyakunnon S; Wei HX; Zhou LJ; Peng HJ
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):202-212. PubMed ID: 30576742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylome analysis of the feline small intestine following Toxoplasma gondii infection.
    Meng YM; Zhai BT; Elsheikha HM; Xie SC; Wang ZX; Zhao Q; Zhu XQ; He JJ
    Parasitol Res; 2020 Nov; 119(11):3649-3657. PubMed ID: 32951143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-Based Phosphoproteomic Analysis of
    He C; Xu MZ; Pan S; Wang H; Peng HJ; Liu ZZ
    Front Cell Infect Microbiol; 2020; 10():586466. PubMed ID: 33363051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteome of
    He C; Chen AY; Wei HX; Feng XS; Peng HJ
    Am J Trop Med Hyg; 2017 Jul; 97(1):236-244. PubMed ID: 28719319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global phosphoproteome analysis reveals significant differences between sporulated oocysts of virulent and avirulent strains of Toxoplasma gondii.
    Wang ZX; Hu RS; Zhu XQ; Sun XL; Elsheikha HM
    Microb Pathog; 2021 Dec; 161(Pt A):105240. PubMed ID: 34655729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics study of cat small intestine during the early stage of Toxoplasma gondii oocyst formation identifies potential biomarkers.
    Zhai B; He JJ; Xie SC; Qiu Y; Miao Z; Liu Y; Zhu XQ; Zhang J
    Vet Parasitol; 2022 Sep; 309():109764. PubMed ID: 35870221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Phosphoproteomic Analysis of Sporulated Oocysts and Tachyzoites of
    Wang ZX; Che L; Hu RS; Sun XL
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164288
    [No Abstract]   [Full Text] [Related]  

  • 12. Proteomic Differences between Developmental Stages of
    Wang ZX; Zhou CX; Elsheikha HM; He S; Zhou DH; Zhu XQ
    Front Microbiol; 2017; 8():985. PubMed ID: 28626452
    [No Abstract]   [Full Text] [Related]  

  • 13. iTRAQ-based differential proteomic analysis in Mongolian gerbil brains chronically infected with Toxoplasma gondii.
    Lv L; Wang Y; Feng W; Hernandez JA; Huang W; Zheng Y; Zhou X; Lv S; Chen Y; Yuan ZG
    J Proteomics; 2017 May; 160():74-83. PubMed ID: 28323244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomic Analysis Reveals the Predominating Cellular Processes and the Involved Key Phosphoproteins Essential for the Proliferation of Toxoplasma gondii.
    Chen XZ; Bai RX; Qin FY; Peng HJ; Ren JF; Hu L; Li YD; He C
    Acta Parasitol; 2023 Dec; 68(4):820-831. PubMed ID: 37821727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation Analysis of Feline Small Intestine Following
    Zhai B; Xie S; Peng J; Qiu Y; Liu Y; Zhu X; He J; Zhang J
    Animals (Basel); 2022 Oct; 12(20):. PubMed ID: 36290246
    [No Abstract]   [Full Text] [Related]  

  • 16. Development of Toxoplasma gondii Chinese I genotype Wh6 Strain in Cat Intestinal Epithelial Cells.
    Zhao G; Zhang L; Dai L; Xu H; Xu C; Xiao T; Li J; Sun H; Zhou B; Yin K
    Korean J Parasitol; 2022 Aug; 60(4):241-246. PubMed ID: 36041485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic insights into the early host-pathogen interaction of cat intestine with Toxoplasma gondii.
    Wang M; Zhang FK; Elsheikha HM; Zhang NZ; He JJ; Luo JX; Zhu XQ
    Parasit Vectors; 2018 Nov; 11(1):592. PubMed ID: 30428922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection.
    Yang J; Du F; Zhou X; Wang L; Li S; Fang R; Zhao J
    Parasitol Res; 2018 Aug; 117(8):2623-2633. PubMed ID: 29948204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P2X7 receptor mediates NLRP3-dependent IL-1β secretion and parasite proliferation in Toxoplasma gondii-infected human small intestinal epithelial cells.
    Quan JH; Huang R; Wang Z; Huang S; Choi IW; Zhou Y; Lee YH; Chu JQ
    Parasit Vectors; 2018 Jan; 11(1):1. PubMed ID: 29291748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Proteomics Analysis for Elucidating the Interaction Between Host Cells and
    Sun H; Li J; Wang L; Yin K; Xu C; Liu G; Xiao T; Huang B; Wei Q; Gong M; Cao J
    Front Cell Infect Microbiol; 2021; 11():643001. PubMed ID: 34055664
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.