These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38003568)

  • 1. Improved 2,3-Butanediol Production Rate of Metabolically Engineered
    Sugimura M; Seike T; Okahashi N; Izumi Y; Bamba T; Ishii J; Matsuda F
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003568
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid
    Lee YG; Seo JH
    Biotechnol Biofuels; 2019; 12():204. PubMed ID: 31485270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim SJ; Sim HJ; Kim JW; Lee YG; Park YC; Seo JH
    Bioresour Technol; 2017 Dec; 245(Pt B):1551-1557. PubMed ID: 28651874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae.
    Morita K; Matsuda F; Okamoto K; Ishii J; Kondo A; Shimizu H
    Microb Cell Fact; 2019 Oct; 18(1):177. PubMed ID: 31615527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting.
    Yatabe F; Seike T; Okahashi N; Ishii J; Matsuda F
    Microb Cell Fact; 2023 Oct; 22(1):204. PubMed ID: 37807050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae.
    Mitsui R; Yamada R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2022 Jan; 38(3):38. PubMed ID: 35018511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pyruvate carbon flux tugging strategy for increasing 2,3-butanediol production and reducing ethanol subgeneration in the yeast
    Ishii J; Morita K; Ida K; Kato H; Kinoshita S; Hataya S; Shimizu H; Kondo A; Matsuda F
    Biotechnol Biofuels; 2018; 11():180. PubMed ID: 29983743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production.
    Lee JW; Lee YG; Jin YS; Rao CV
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5751-5767. PubMed ID: 34287658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S; Hahn JS
    Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.
    Watanabe D; Kaneko A; Sugimoto Y; Ohnuki S; Takagi H; Ohya Y
    J Biosci Bioeng; 2017 Feb; 123(2):183-189. PubMed ID: 27633130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production.
    Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an industrial yeast strain for efficient production of 2,3-butanediol.
    Huo G; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2022 Sep; 21(1):199. PubMed ID: 36175998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.