BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38003588)

  • 1. Can Activation of Acetylcholinesterase by β-Amyloid Peptide Decrease the Effectiveness of Cholinesterase Inhibitors?
    Zueva IV; Vasilieva EA; Gaynanova GA; Moiseenko AV; Burtseva AD; Boyko KM; Zakharova LY; Petrov KA
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of exogenous acetylcholinesterase and butyrylcholinesterase with amyloid-β plaques in human brain tissue.
    Reid GA; Darvesh S
    Chem Biol Interact; 2024 May; 395():111012. PubMed ID: 38648920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-alkylpiperidine carbamates as potential anti-Alzheimer's agents.
    Košak U; Strašek N; Knez D; Jukič M; Žakelj S; Zahirović A; Pišlar A; Brazzolotto X; Nachon F; Kos J; Gobec S
    Eur J Med Chem; 2020 Jul; 197():112282. PubMed ID: 32380361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase.
    Ghafary S; Ghobadian R; Mahdavi M; Nadri H; Moradi A; Akbarzadeh T; Najafi Z; Sharifzadeh M; Edraki N; Moghadam FH; Amini M
    Daru; 2020 Dec; 28(2):463-477. PubMed ID: 32372339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of butyrylcholinesterase knockout mice to (--)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholinesterase function in neurotransmission.
    Duysen EG; Li B; Darvesh S; Lockridge O
    Toxicology; 2007 Apr; 233(1-3):60-9. PubMed ID: 17194517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinesterase inhibitors proposed for treating dementia in Alzheimer's disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase.
    Pacheco G; Palacios-Esquivel R; Moss DE
    J Pharmacol Exp Ther; 1995 Aug; 274(2):767-70. PubMed ID: 7636741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH
    Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer's disease.
    Bowroju SK; Penthala NR; Lakkaniga NR; Balasubramaniam M; Ayyadevara S; Shmookler Reis RJ; Crooks PA
    Bioorg Med Chem; 2021 Sep; 45():116311. PubMed ID: 34304133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway.
    Ali MY; Jannat S; Edraki N; Das S; Chang WK; Kim HC; Park SK; Chang MS
    Chem Biol Interact; 2019 Aug; 309():108707. PubMed ID: 31194956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual targeting of cholinesterase and amyloid beta with pyridinium/isoquinolium derivatives.
    Chakravarty H; Ju Y; Chen WH; Tam KY
    Drug Dev Res; 2020 Apr; 81(2):242-255. PubMed ID: 31837041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DL0410, a novel dual cholinesterase inhibitor, protects mouse brains against Aβ-induced neuronal damage via the Akt/JNK signaling pathway.
    Zhou D; Zhou W; Song JK; Feng ZY; Yang RY; Wu S; Wang L; Liu AL; Du GH
    Acta Pharmacol Sin; 2016 Nov; 37(11):1401-1412. PubMed ID: 27498773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway.
    Reale M; Di Nicola M; Velluto L; D'Angelo C; Costantini E; Lahiri DK; Kamal MA; Yu QS; Greig NH
    Curr Alzheimer Res; 2014; 11(6):608-22. PubMed ID: 24359497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New phosphazine and phosphazide derivatives as multifunctional ligands targeting acetylcholinesterase and β-Amyloid aggregation for treatment of Alzheimer's disease.
    El-Sayed NF; El-Hussieny M; Ewies EF; Fouad MA; Boulos LS
    Bioorg Chem; 2020 Jan; 95():103499. PubMed ID: 31838287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors:
    Makhaeva GF; Kovaleva NV; Boltneva NP; Rudakova EV; Lushchekina SV; Astakhova TY; Serkov IV; Proshin AN; Radchenko EV; Palyulin VA; Korabecny J; Soukup O; Bachurin SO; Richardson RJ
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, acetylcholinesterase, butyrylcholinesterase, and amyloid-β aggregation inhibition studies of substituted 4,4'-diimine/4,4'-diazobiphenyl derivatives.
    Fidan GS; Parlar S; Tarikogullari AH; Alptuzun V; Alpan AS
    Arch Pharm (Weinheim); 2022 Dec; 355(12):e2200152. PubMed ID: 35976708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease.
    Purgatorio R; de Candia M; Catto M; Carrieri A; Pisani L; De Palma A; Toma M; Ivanova OA; Voskressensky LG; Altomare CD
    Eur J Med Chem; 2019 Sep; 177():414-424. PubMed ID: 31158754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.
    Zha GF; Zhang CP; Qin HL; Jantan I; Sher M; Amjad MW; Hussain MA; Hussain Z; Bukhari SN
    Bioorg Med Chem; 2016 May; 24(10):2352-9. PubMed ID: 27083471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors.
    Yu Z; Ji H; Shen J; Kan R; Zhao W; Li J; Ding L; Liu J
    Food Funct; 2020 Jul; 11(7):6643-6651. PubMed ID: 32656560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer's disease.
    Parnetti L; Chiasserini D; Andreasson U; Ohlson M; Hüls C; Zetterberg H; Minthon L; Wallin AK; Andreasen N; Talesa VN; Blennow K
    Acta Neurol Scand; 2011 Aug; 124(2):122-9. PubMed ID: 20880294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of huprine X on β-amyloid, synaptophysin and α7 neuronal nicotinic acetylcholine receptors in the brain of 3xTg-AD and APPswe transgenic mice.
    Hedberg MM; Clos MV; Ratia M; Gonzalez D; Lithner CU; Camps P; Muñoz-Torrero D; Badia A; Giménez-Llort L; Nordberg A
    Neurodegener Dis; 2010; 7(6):379-88. PubMed ID: 20689242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.