BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38003591)

  • 1. Reactive Molecular Dynamics Simulations of Polystyrene Pyrolysis.
    Li C; Yang Z; Wu X; Shao S; Meng X; Qin G
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple.
    Prathiba R; Shruthi M; Miranda LR
    Waste Manag; 2018 Jun; 76():528-536. PubMed ID: 29576515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution.
    Nisar J; Ali G; Shah A; Iqbal M; Khan RA; Sirajuddin ; Anwar F; Ullah R; Akhter MS
    Waste Manag; 2019 Apr; 88():236-247. PubMed ID: 31079636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ReaxFF molecular dynamic study on pyrolysis behavior and sulfur transfer during pyrolysis of vulcanized natural rubber.
    Wei X; Yu J; Du J; Sun L
    Waste Manag; 2022 Feb; 139():39-49. PubMed ID: 34933245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Constructions and Pyrolysis of 3D Kerogen Macromolecular Models: Experiments and Simulations.
    Wang X; Huang X; Lin K; Zhao YP
    Glob Chall; 2019 May; 3(5):1900006. PubMed ID: 31565377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of particle characteristics, heating temperature and time on the pyrolysis product distributions of polystyrene micro- and nano-plastics.
    Li Q; Bai Q; Sheng X; Li P; Zheng R; Yu S; Liu J
    J Chromatogr A; 2022 Oct; 1682():463503. PubMed ID: 36152483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the pyrolysis of coals of different rank using the ReaxFF reactive force field.
    Guo L; Zhou Z; Chen L; Shan S; Wang Z
    J Mol Model; 2019 May; 25(6):174. PubMed ID: 31144031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis Mechanism of Wheat Straw Based on ReaxFF Molecular Dynamics Simulations.
    Liu Z; Ku X; Jin H
    ACS Omega; 2022 Jun; 7(24):21075-21085. PubMed ID: 35755388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Temperature Pyrolysis of
    Yu X; Zhang C; Wang H; Li Y; Kang Y; Yang K
    ACS Omega; 2023 Jun; 8(23):20823-20833. PubMed ID: 37332798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires.
    Wang H; Hu H; Yang Y; Liu H; Tang H; Xu S; Li A; Yao H
    Waste Manag; 2020 Dec; 118():9-17. PubMed ID: 32871409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torrefaction, temperature, and heating rate dependencies of pyrolysis of coffee grounds: Its performances, bio-oils, and emissions.
    Fu J; Liu J; Xu W; Chen Z; Evrendilek F; Sun S
    Bioresour Technol; 2022 Feb; 345():126346. PubMed ID: 34856353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the degradation of polypropylene and polystyrene under shock compression and mechanical cleaving using the ReaxFF force field.
    Panczyk T; Nieszporek K; Wolski P
    Chemosphere; 2024 Jun; 357():142056. PubMed ID: 38641294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the reaction mechanism of microwave pyrolysis of oily sludge by products analysis and ReaxFF MD simulation.
    Wen Y; Li W; Xie Y; Qin Z; Gu M; Wang T; Hou Y
    Environ Technol; 2022 May; 43(13):2002-2016. PubMed ID: 33319633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions.
    Dong Z; Bai X; Xu D; Li W
    Bioresour Technol; 2023 Jan; 367():128182. PubMed ID: 36307026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of zeolite H-β effect on pyrolysis of polystyrene by multiple kinetic analysis methods.
    Ma QY; Huang Z; Li YS; Zhao CX
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39680-39694. PubMed ID: 36598725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis.
    Li W; Zhu YM; Wang G; Wang Y; Liu Y
    J Mol Model; 2015 Aug; 21(8):188. PubMed ID: 26149754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive molecular dynamics simulations on thermal decomposition of 3-methyl-2,6-dinitrophenol.
    Zhao J; Xiao Y; He J; Wang J
    J Mol Model; 2022 Jan; 28(2):45. PubMed ID: 35079908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Different Guests on Pyrolysis Mechanism of α-CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures.
    Zhou M; Luo J; Xiang D
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil.
    Baena-González J; Santamaria-Echart A; Aguirre JL; González S
    Waste Manag; 2020 Dec; 118():139-149. PubMed ID: 32892091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.