BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 38003594)

  • 1. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting.
    Nevi L; Pöllänen N; Penna F; Caretti G
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia.
    Yedigaryan L; Gatti M; Marini V; Maraldi T; Sampaolesi M
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study.
    Ebhardt HA; Degen S; Tadini V; Schilb A; Johns N; Greig CA; Fearon KCH; Aebersold R; Jacobi C
    J Cachexia Sarcopenia Muscle; 2017 Aug; 8(4):567-582. PubMed ID: 28296247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.
    Ebner N; Elsner S; Springer J; von Haehling S
    Curr Opin Support Palliat Care; 2014 Mar; 8(1):15-24. PubMed ID: 24452279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival.
    Segatto M; Fittipaldi R; Pin F; Sartori R; Dae Ko K; Zare H; Fenizia C; Zanchettin G; Pierobon ES; Hatakeyama S; Sperti C; Merigliano S; Sandri M; Filippakopoulos P; Costelli P; Sartorelli V; Caretti G
    Nat Commun; 2017 Nov; 8(1):1707. PubMed ID: 29167426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drugs of Muscle Wasting and Their Therapeutic Targets.
    Sakuma K; Yamaguchi A
    Adv Exp Med Biol; 2018; 1088():463-481. PubMed ID: 30390265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D, muscle recovery, sarcopenia, cachexia, and muscle atrophy.
    Garcia M; Seelaender M; Sotiropoulos A; Coletti D; Lancha AH
    Nutrition; 2019 Apr; 60():66-69. PubMed ID: 30529188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle loss: cachexia, sarcopenia, and inactivity.
    Evans WJ
    Am J Clin Nutr; 2010 Apr; 91(4):1123S-1127S. PubMed ID: 20164314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia.
    Song J; Clark A; Wade CE; Wolf SE
    JPEN J Parenter Enteral Nutr; 2021 Nov; 45(8):1627-1633. PubMed ID: 34296448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.
    Sukari A; Muqbil I; Mohammad RM; Philip PA; Azmi AS
    Semin Cancer Biol; 2016 Feb; 36():95-104. PubMed ID: 26804424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging roles for histone deacetylases in age-related muscle atrophy.
    Walsh ME; Van Remmen H
    Nutr Healthy Aging; 2016 Oct; 4(1):17-30. PubMed ID: 28035339
    [No Abstract]   [Full Text] [Related]  

  • 13. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia.
    Sannicandro AJ; McDonagh B; Goljanek-Whysall K
    Curr Opin Clin Nutr Metab Care; 2020 May; 23(3):157-163. PubMed ID: 32073414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment.
    Drescher C; Konishi M; Ebner N; Springer J
    Int J Cardiol; 2016 Jan; 202():766-72. PubMed ID: 26474466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions.
    Stalmach A; Boehm I; Fernandes M; Rutter A; Skipworth RJE; Husi H
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.
    Saitoh M; Ishida J; Doehner W; von Haehling S; Anker MS; Coats AJS; Anker SD; Springer J
    Int J Cardiol; 2017 Jul; 238():5-11. PubMed ID: 28427849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel dual epigenetic approach targeting BET proteins and HDACs in Group 3 (MYC-driven) Medulloblastoma.
    Kling MJ; Kesherwani V; Mishra NK; Alexander G; McIntyre EM; Ray S; Challagundla KB; Joshi SS; Coulter DW; Chaturvedi NK
    J Exp Clin Cancer Res; 2022 Nov; 41(1):321. PubMed ID: 36357906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of sarcopenia and cachexia: recent research advances.
    Sakuma K; Aoi W; Yamaguchi A
    Pflugers Arch; 2017 Jun; 469(5-6):573-591. PubMed ID: 28101649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting.
    Dave S; Patel BM
    Fundam Clin Pharmacol; 2023 Dec; 37(6):1079-1091. PubMed ID: 37474262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.