These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 38003787)

  • 1. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with
    Thompson MEH; Shrestha A; Rinne J; Limay-Rios V; Reid L; Raizada MN
    Pathogens; 2023 Nov; 12(11):. PubMed ID: 38003787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmitting silks of maize have a complex and dynamic microbiome.
    Khalaf EM; Shrestha A; Rinne J; Lynch MDJ; Shearer CR; Limay-Rios V; Reid LM; Raizada MN
    Sci Rep; 2021 Jun; 11(1):13215. PubMed ID: 34168223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria existing in pre-pollinated styles (silks) can defend the exposed male gamete fertilization channel of maize against an environmental
    Shrestha A; Limay-Rios V; Brettingham DJL; Raizada MN
    Front Plant Sci; 2023; 14():1292109. PubMed ID: 38111882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize pollen carry bacteria that suppress a fungal pathogen that enters through the male gamete fertilization route.
    Shrestha A; Limay-Rios V; Brettingham DJL; Raizada MN
    Front Plant Sci; 2023; 14():1286199. PubMed ID: 38269134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocols to enable fluorescence microscopy of microbial interactions on living maize silks (style tissue).
    Thompson MEH; Raizada MN
    J Microbiol Methods; 2024 Oct; 225():107027. PubMed ID: 39214401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction.
    Thompson MEH; Raizada MN
    Microorganisms; 2024 Jul; 12(7):. PubMed ID: 39065240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road.
    Thompson MEH; Raizada MN
    Pathogens; 2018 Oct; 7(4):. PubMed ID: 30314351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation and diversity of the pollen microbiome of Pan-American maize using PacBio and MiSeq.
    Khalaf EM; Shrestha A; Reid M; McFadyen BJ; Raizada MN
    Front Microbiol; 2023; 14():1276241. PubMed ID: 38179444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical simulation of growth of fusarium in maize ears after artificial inoculation.
    Stewart DW; Reid LM; Nicol RW; Schaafsma AW
    Phytopathology; 2002 May; 92(5):534-41. PubMed ID: 18943028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe.
    Cao A; Reid LM; Butrón A; Malvar RA; Souto XC; Santiago R
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1020-6. PubMed ID: 21635140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichothecene Genotype of Fusarium graminearum Isolates from Soybean (Glycine max) Seedling and Root Diseases in the United States.
    Ellis ML; Munkvold GP
    Plant Dis; 2014 Jul; 98(7):1012. PubMed ID: 30708932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat.
    Basler R
    PeerJ; 2016; 4():e2143. PubMed ID: 27366645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggressiveness and Mycotoxin Production by
    Machado FJ; de Barros AV; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM
    Phytopathology; 2022 Feb; 112(2):271-277. PubMed ID: 34142851
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of Fusarium graminearum and F. moniliforme in Maize Ears: Disease Progress, Fungal Biomass, and Mycotoxin Accumulation.
    Reid LM; Nicol RW; Ouellet T; Savard M; Miller JD; Young JC; Stewart DW; Schaafsma AW
    Phytopathology; 1999 Nov; 89(11):1028-37. PubMed ID: 18944658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First report of Head blight of wheat caused by Fusarium vorosii in Serbia.
    Obradović A; Stepanovic J; Krnjaja V; Bulajic A; Stanković G; Stevanović M; Stankovic S
    Plant Dis; 2021 Jul; ():. PubMed ID: 34236211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize.
    Horevaj P; Bluhm BH
    Mol Plant Pathol; 2012 Jun; 13(5):431-44. PubMed ID: 22044756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maize stigmas react differently to self- and cross-pollination and fungal invasion.
    Begcy K; Mondragón-Palomino M; Zhou LZ; Seitz PL; Márton ML; Dresselhaus T
    Plant Physiol; 2024 Oct; ():. PubMed ID: 39371027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal impacts on the wheat microbiome when
    Alukumbura AS; Bigi A; Sarrocco S; Fernando WGD; Vannacci G; Mazzoncini M; Bakker MG
    Front Microbiol; 2022; 13():972016. PubMed ID: 36212885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize Root Exudates Recruit
    Xie S; Jiang L; Wu Q; Wan W; Gan Y; Zhao L; Wen J
    Phytopathology; 2022 Sep; 112(9):1886-1893. PubMed ID: 35297645
    [No Abstract]   [Full Text] [Related]  

  • 20. Roles of the
    Castorina G; Bigelow M; Hattery T; Zilio M; Sangiorgio S; Caporali E; Venturini G; Iriti M; Yandeau-Nelson MD; Consonni G
    Front Plant Sci; 2023; 14():1228394. PubMed ID: 37546274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.