These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38004512)
1. Development of a Novel In Vitro Model to Study Lymphatic Uptake of Drugs via Artificial Chylomicrons. Yousef M; Park C; Henostroza M; Bou Chacra N; Davies NM; Löbenberg R Pharmaceutics; 2023 Oct; 15(11):. PubMed ID: 38004512 [TBL] [Abstract][Full Text] [Related]
2. In Vitro Predictive Model for Intestinal Lymphatic Uptake: Exploration of Additional Enhancers and Inhibitors. Yousef M; O'Croinin C; Le TS; Park C; Zuo J; Bou Chacra N; Davies NM; Löbenberg R Pharmaceutics; 2024 Jun; 16(6):. PubMed ID: 38931889 [TBL] [Abstract][Full Text] [Related]
3. Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability. Gershkovich P; Hoffman A Eur J Pharm Sci; 2005 Dec; 26(5):394-404. PubMed ID: 16140514 [TBL] [Abstract][Full Text] [Related]
4. Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. Feng W; Qin C; Abdelrazig S; Bai Z; Raji M; Darwish R; Chu Y; Ji L; Gray DA; Stocks MJ; Constantinescu CS; Barrett DA; Fischer PM; Gershkovich P Int J Pharm; 2022 Aug; 624():121947. PubMed ID: 35753538 [TBL] [Abstract][Full Text] [Related]
5. The Interplay Between Liver First-Pass Effect and Lymphatic Absorption of Cannabidiol and Its Implications for Cannabidiol Oral Formulations. Franco V; Gershkovich P; Perucca E; Bialer M Clin Pharmacokinet; 2020 Dec; 59(12):1493-1500. PubMed ID: 32785853 [TBL] [Abstract][Full Text] [Related]
6. Understanding lymphatic drug delivery through chylomicron blockade: A retrospective and prospective analysis. Yousef M; Bou-Chacra N; Löbenberg R; Davies NM J Pharmacol Toxicol Methods; 2024; 129():107548. PubMed ID: 39098619 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Dahan A; Hoffman A Eur J Pharm Sci; 2005 Mar; 24(4):381-8. PubMed ID: 15734305 [TBL] [Abstract][Full Text] [Related]
8. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. Chaudhary S; Garg T; Murthy RS; Rath G; Goyal AK J Drug Target; 2014 Dec; 22(10):871-82. PubMed ID: 25148607 [TBL] [Abstract][Full Text] [Related]
9. Bioactive-Chylomicrons for Oral Lymphatic Targeting of Berberine Chloride: Novel Flow-Blockage Assay in Tissue-Based and Caco-2 Cell Line Models. Elsheikh MA; Elnaggar YSR; Otify DY; Abdallah OY Pharm Res; 2018 Jan; 35(1):18. PubMed ID: 29305670 [TBL] [Abstract][Full Text] [Related]
10. Intestinal lymphatic transport for drug delivery. Yáñez JA; Wang SW; Knemeyer IW; Wirth MA; Alton KB Adv Drug Deliv Rev; 2011 Sep; 63(10-11):923-42. PubMed ID: 21689702 [TBL] [Abstract][Full Text] [Related]
11. Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: the influence of polysorbate 60 and 80. Lind ML; Jacobsen J; Holm R; Müllertz A Eur J Pharm Sci; 2008 Oct; 35(3):211-8. PubMed ID: 18675904 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic reassembled chylomicrons as novel association model for the prediction of lymphatic transportation of highly lipophilic drugs via the oral route. Lu Y; Qiu Y; Qi J; Feng M; Ju D; Wu W Int J Pharm; 2015 Apr; 483(1-2):69-76. PubMed ID: 25681731 [TBL] [Abstract][Full Text] [Related]
13. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Ali Khan A; Mudassir J; Mohtar N; Darwis Y Int J Nanomedicine; 2013; 8():2733-44. PubMed ID: 23926431 [TBL] [Abstract][Full Text] [Related]
14. Liposomal delivery systems for intestinal lymphatic drug transport. Ahn H; Park JH Biomater Res; 2016; 20():36. PubMed ID: 27895934 [TBL] [Abstract][Full Text] [Related]
15. Uptake of phenothiazines by the harvested chylomicrons ex vivo model: influence of self-nanoemulsifying formulation design. Shahnaz G; Hartl M; Barthelmes J; Leithner K; Sarti F; Hintzen F; Rahmat D; Salvenmoser W; Bernkop-Schnürch A Eur J Pharm Biopharm; 2011 Sep; 79(1):171-80. PubMed ID: 21303694 [TBL] [Abstract][Full Text] [Related]
16. The role of molecular physicochemical properties and apolipoproteins in association of drugs with triglyceride-rich lipoproteins: in-silico prediction of uptake by chylomicrons. Gershkovich P; Fanous J; Qadri B; Yacovan A; Amselem S; Hoffman A J Pharm Pharmacol; 2009 Jan; 61(1):31-9. PubMed ID: 19126294 [TBL] [Abstract][Full Text] [Related]
17. A new function of Vitamin E-TPGS in the intestinal lymphatic transport of lipophilic drugs: enhancing the secretion of chylomicrons. Fan Z; Wu J; Fang X; Sha X Int J Pharm; 2013 Mar; 445(1-2):141-7. PubMed ID: 23396256 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic Oral Absorption Modeling of Halofantrine: Exploring the Role of Intestinal Lymphatic Transport. Dolton MJ; Chiang PC; Chen Y J Pharm Sci; 2021 Mar; 110(3):1427-1430. PubMed ID: 33359312 [TBL] [Abstract][Full Text] [Related]
19. Acute hypertriglyceridemia promotes intestinal lymphatic lipid and drug transport: a positive feedback mechanism in lipid and drug absorption. Trevaskis NL; Charman WN; Porter CJ Mol Pharm; 2011 Aug; 8(4):1132-9. PubMed ID: 21604764 [TBL] [Abstract][Full Text] [Related]
20. Lymphatic transport of halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: effect of lipid class and lipid vehicle dispersion. Porter CJ; Charman SA; Humberstone AJ; Charman WN J Pharm Sci; 1996 Apr; 85(4):357-61. PubMed ID: 8901068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]