These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38004708)
1. Improvement of the Genome Editing Tools Based on 5FC/5FU Counter Selection in Boudignon E; Foulquier C; Soucaille P Microorganisms; 2023 Nov; 11(11):. PubMed ID: 38004708 [TBL] [Abstract][Full Text] [Related]
2. Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer Clostridium acetobutylicum. Croux C; Nguyen NP; Lee J; Raynaud C; Saint-Prix F; Gonzalez-Pajuelo M; Meynial-Salles I; Soucaille P Biotechnol Biofuels; 2016; 9():23. PubMed ID: 26839586 [TBL] [Abstract][Full Text] [Related]
3. Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of Wilding-Steele T; Ramette Q; Jacottin P; Soucaille P Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33918190 [TBL] [Abstract][Full Text] [Related]
4. An efficient method for markerless mutant generation by allelic exchange in Foulquier C; Huang CN; Nguyen NP; Thiel A; Wilding-Steel T; Soula J; Yoo M; Ehrenreich A; Meynial-Salles I; Liebl W; Soucaille P Biotechnol Biofuels; 2019; 12():31. PubMed ID: 30809274 [TBL] [Abstract][Full Text] [Related]
5. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973 [TBL] [Abstract][Full Text] [Related]
6. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775 [TBL] [Abstract][Full Text] [Related]
7. A CRISPR/Anti-CRISPR Genome Editing Approach Underlines the Synergy of Butanol Dehydrogenases in Clostridium acetobutylicum DSM 792. Wasels F; Chartier G; Hocq R; Lopes Ferreira N Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32385078 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Jang YS; Malaviya A; Lee J; Im JA; Lee SY; Lee J; Eom MH; Cho JH; Seung do Y Biotechnol Prog; 2013; 29(4):1083-8. PubMed ID: 23606675 [TBL] [Abstract][Full Text] [Related]
9. Single Crossover-Mediated Markerless Genome Engineering in Clostridium acetobutylicum. Lee SH; Kim HJ; Shin YA; Kim KH; Lee SJ J Microbiol Biotechnol; 2016 Apr; 26(4):725-9. PubMed ID: 26767573 [TBL] [Abstract][Full Text] [Related]
10. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. Ehsaan M; Kuit W; Zhang Y; Cartman ST; Heap JT; Winzer K; Minton NP Biotechnol Biofuels; 2016; 9():4. PubMed ID: 26732067 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. Turner RJ; Lu Y; Switzer RL J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849 [TBL] [Abstract][Full Text] [Related]
12. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Cho C; Lee SY Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464 [TBL] [Abstract][Full Text] [Related]
13. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. Ghim SY; Neuhard J J Bacteriol; 1994 Jun; 176(12):3698-707. PubMed ID: 8206848 [TBL] [Abstract][Full Text] [Related]
14. Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. Cai X; Bennett GN J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1013-25. PubMed ID: 20931261 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Lee J; Jang YS; Choi SJ; Im JA; Song H; Cho JH; Seung do Y; Papoutsakis ET; Bennett GN; Lee SY Appl Environ Microbiol; 2012 Mar; 78(5):1416-23. PubMed ID: 22210214 [TBL] [Abstract][Full Text] [Related]
16. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. Wang Y; Zhang C; Gong T; Zuo Z; Zhao F; Fan X; Yang C; Song C J Microbiol Methods; 2015 Jun; 113():27-33. PubMed ID: 25828098 [TBL] [Abstract][Full Text] [Related]
17. Regional 'pro-drug' gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Topf N; Worgall S; Hackett NR; Crystal RG Gene Ther; 1998 Apr; 5(4):507-13. PubMed ID: 9614575 [TBL] [Abstract][Full Text] [Related]
18. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19. Cho C; Choe D; Jang YS; Kim KJ; Kim WJ; Cho BK; Papoutsakis ET; Bennett GN; Seung DY; Lee SY Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27918147 [TBL] [Abstract][Full Text] [Related]
19. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering. Dong H; Tao W; Zhang Y; Li Y Metab Eng; 2012 Jan; 14(1):59-67. PubMed ID: 22056607 [TBL] [Abstract][Full Text] [Related]
20. Structure and mapping of spontaneous mutational sites of PyrR from Mycobacterium tuberculosis. Ghode P; Ramachandran S; Bifani P; Sivaraman J Biochem Biophys Res Commun; 2016 Mar; 471(4):409-15. PubMed ID: 26902118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]