These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38004840)

  • 1. Tool Wear State Recognition Based on One-Dimensional Convolutional Channel Attention.
    Xue Z; Li L; Chen N; Wu W; Zou Y; Yu N
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved ResNet-1d with Channel Attention for Tool Wear Monitor in Smart Manufacturing.
    Dong L; Wang C; Yang G; Huang Z; Zhang Z; Li C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images.
    Yang J; Duan J; Li T; Hu C; Liang J; Shi T
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Multivariate Cutting Force-Based Tool Wear Monitoring Method Using One-Dimensional Convolutional Neural Network.
    Yang X; Yuan R; Lv Y; Li L; Song H
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals.
    Zhang Y; Qi X; Wang T; He Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring.
    Ou J; Li H; Huang G; Zhou Q
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural Network during the Turning Process.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radar Emitter Signal Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism.
    Wu B; Yuan S; Li P; Jing Z; Huang S; Zhao Y
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DSTCNet: Deep Spectro-Temporal-Channel Attention Network for Speech Emotion Recognition.
    Guo L; Ding S; Wang L; Dang J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37624721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals.
    Li W; Gao J
    PeerJ Comput Sci; 2023; 9():e1561. PubMed ID: 37810362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multichannel Two-Dimensional Convolutional Neural Network Based on Interactive Features and Group Strategy for Chinese Sentiment Analysis.
    Wang L; Meng Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.
    Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Video Sequence Face Expression Recognition Method Based on Squeeze-and-Excitation and 3DPCA Network.
    Li C; Wen C; Qiu Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal Status Recognition Based on 1DCNN and Its Feature Extraction Mechanism Analysis.
    Huang S; Tang J; Dai J; Wang Y
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework.
    Ullah H; Munir A
    J Imaging; 2023 Jun; 9(7):. PubMed ID: 37504807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset.
    Zhang T; Li C; Li P; Peng Y; Kang X; Jiang C; Li F; Zhu X; Yao D; Biswal B; Xu P
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.