These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38004916)
1. Printed Capillary Microfluidic Devices and Their Application in Biosensing. Zhang Z; Lang S; Pearson K; Farhan Y; Tao Y; Xiao G Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004916 [TBL] [Abstract][Full Text] [Related]
2. Printable microfluidic systems using pressure sensitive adhesive material for biosensing devices. Wang X; Nilsson D; Norberg P Biochim Biophys Acta; 2013 Sep; 1830(9):4398-401. PubMed ID: 23220698 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers. Ino K; Konno A; Utagawa Y; Kanno T; Iwase K; Abe H; Shiku H Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203705 [TBL] [Abstract][Full Text] [Related]
4. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925 [TBL] [Abstract][Full Text] [Related]
5. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Yao Y; Zhang C Biomed Microdevices; 2016 Oct; 18(5):92. PubMed ID: 27628060 [TBL] [Abstract][Full Text] [Related]
6. Autonomous electrochemical biosensing of glial fibrillary acidic protein for point-of-care detection of central nervous system injuries. Salahandish R; Hassani M; Zare A; Haghayegh F; Sanati-Nezhad A Lab Chip; 2022 Apr; 22(8):1542-1555. PubMed ID: 35297932 [TBL] [Abstract][Full Text] [Related]
7. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Zhang H; Smith E; Zhang W; Zhou A Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic Device Directly Fabricated on Screen-Printed Electrodes for Ultrasensitive Electrochemical Sensing of PSA. Chen S; Wang Z; Cui X; Jiang L; Zhi Y; Ding X; Nie Z; Zhou P; Cui D Nanoscale Res Lett; 2019 Feb; 14(1):71. PubMed ID: 30820698 [TBL] [Abstract][Full Text] [Related]
9. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478 [TBL] [Abstract][Full Text] [Related]
10. Materials Characterization of Stereolithography 3D Printed Polymer to Develop a Self-Driven Microfluidic Device for Bioanalytical Applications. Stark BL; Gamboa M; Esparza A; Cavendar-Word TJ; Bermudez D; Carlon L; Roberson DA; Joddar B; Natividad-Diaz S ACS Appl Bio Mater; 2024 May; ():. PubMed ID: 38776250 [TBL] [Abstract][Full Text] [Related]
11. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
12. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device. Kecili S; Tekin HC Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724 [TBL] [Abstract][Full Text] [Related]
13. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
14. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753 [TBL] [Abstract][Full Text] [Related]
15. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Dornelas KL; Dossi N; Piccin E Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806 [TBL] [Abstract][Full Text] [Related]
16. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Erkal JL; Selimovic A; Gross BC; Lockwood SY; Walton EL; McNamara S; Martin RS; Spence DM Lab Chip; 2014 Jun; 14(12):2023-32. PubMed ID: 24763966 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensing in paper-based microfluidic devices. Nie Z; Nijhuis CA; Gong J; Chen X; Kumachev A; Martinez AW; Narovlyansky M; Whitesides GM Lab Chip; 2010 Feb; 10(4):477-83. PubMed ID: 20126688 [TBL] [Abstract][Full Text] [Related]
18. A New Direction in Microfluidics: Printed Porous Materials. Evard H; Priks H; Saar I; Aavola H; Tamm T; Leito I Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34201216 [TBL] [Abstract][Full Text] [Related]
19. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Bruzewicz DA; Reches M; Whitesides GM Anal Chem; 2008 May; 80(9):3387-92. PubMed ID: 18333627 [TBL] [Abstract][Full Text] [Related]
20. Debossed Contact Printing as a Patterning Method for Paper-Based Electronics. Mechael SS; D'Amaral GM; Carmichael TB ACS Appl Mater Interfaces; 2023 Sep; 15(37):44422-44432. PubMed ID: 37669443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]