These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 38004933)
1. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review. Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933 [TBL] [Abstract][Full Text] [Related]
2. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. Cheng Z; Mu F; Yates L; Suga T; Graham S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013 [TBL] [Abstract][Full Text] [Related]
3. High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes. Kagawa R; Cheng Z; Kawamura K; Ohno Y; Moriyama C; Sakaida Y; Ouchi S; Uratani H; Inoue K; Nagai Y; Shigekawa N; Liang J Small; 2024 Mar; 20(13):e2305574. PubMed ID: 37964293 [TBL] [Abstract][Full Text] [Related]
4. Review on Main Gate Characteristics of P-Type GaN Gate High-Electron-Mobility Transistors. Wang Z; Nan J; Tian Z; Liu P; Wu Y; Zhang J Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258199 [TBL] [Abstract][Full Text] [Related]
5. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180 [TBL] [Abstract][Full Text] [Related]
6. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169 [TBL] [Abstract][Full Text] [Related]
7. Thermal Behavior of an AlGaN/GaN-Based Schottky Barrier Diode on Diamond and Silicon Substrates. Kim ZS; Lee HS; Bae SB; Ahn H; Lee SH; Lim JW; Kang DM J Nanosci Nanotechnol; 2021 Aug; 21(8):4429-4433. PubMed ID: 33714339 [TBL] [Abstract][Full Text] [Related]
8. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices. Rafin SMSH; Ahmed R; Haque MA; Hossain MK; Haque MA; Mohammed OA Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004900 [TBL] [Abstract][Full Text] [Related]
9. Diamond/GaN HEMTs: Where from and Where to? Mendes JC; Liehr M; Li C Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057131 [TBL] [Abstract][Full Text] [Related]
10. AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics. Jorudas J; Šimukovič A; Dub M; Sakowicz M; Prystawko P; Indrišiūnas S; Kovalevskij V; Rumyantsev S; Knap W; Kašalynas I Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33419371 [TBL] [Abstract][Full Text] [Related]
11. Investigation on GaN HEMTs Based Three-Phase STATCOM with Hybrid Control Scheme. Ma CT; Gu ZH Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924185 [TBL] [Abstract][Full Text] [Related]
12. Ga Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105 [TBL] [Abstract][Full Text] [Related]
13. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Roccaforte F; Greco G; Fiorenza P; Iucolano F Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096689 [TBL] [Abstract][Full Text] [Related]
14. Thermal Boundary Resistance Extraction of GaN-on-Diamond Substrate from Transmission Line Method Pattern Using Micro-Raman Spectroscopy and Thermal Simulation. Ki RS; Seo KS; Cha HY J Nanosci Nanotechnol; 2021 Aug; 21(8):4434-4437. PubMed ID: 33714340 [TBL] [Abstract][Full Text] [Related]
15. Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices. Calzolaro A; Mikolajick T; Wachowiak A Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160737 [TBL] [Abstract][Full Text] [Related]
16. High Thermal Dissipation of Normally off p-GaN Gate AlGaN/GaN HEMTs on 6-Inch N-Doped Low-Resistivity SiC Substrate. Huang YC; Chiu HC; Kao HL; Wang HC; Liu CH; Huang CR; Chen SW Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34062908 [TBL] [Abstract][Full Text] [Related]
17. Thermal Properties of Schottky Barrier Diode on AlGaN/GaN Heterostructures on Chemical Vapor Deposition Diamond. Kim ZS; Lee HS; Bae SB; Nam E; Lim JW J Nanosci Nanotechnol; 2019 Oct; 19(10):6119-6122. PubMed ID: 31026919 [TBL] [Abstract][Full Text] [Related]
18. Development of GaN HEMTs Fabricated on Silicon, Silicon-on-Insulator, and Engineered Substrates and the Heterogeneous Integration. Hsu LH; Lai YY; Tu PT; Langpoklakpam C; Chang YT; Huang YW; Lee WC; Tzou AJ; Cheng YJ; Lin CH; Kuo HC; Chang EY Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683210 [TBL] [Abstract][Full Text] [Related]
19. Review on Driving Circuits for Wide-Bandgap Semiconductor Switching Devices for Mid- to High-Power Applications. Ma CT; Gu ZH Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33430093 [TBL] [Abstract][Full Text] [Related]
20. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study. Jang KW; Hwang IT; Kim HJ; Lee SH; Lim JW; Kim HS Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]