These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38004936)

  • 1. Synthesis of Imidazole-Compound-Coated Copper Nanoparticles with Promising Antioxidant and Sintering Properties.
    Zhang Y; Yu X; Chen Z; Wu S; Lai H; Ta S; Lin T; Yang G; Cui C
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mild aqueous synthesis of ligand-free copper nanoparticles for low temperature sintering nanopastes with nickel salt assistance.
    Imamura H; Kamikoriyama Y; Muramatsu A; Kanie K
    Sci Rep; 2021 Dec; 11(1):24268. PubMed ID: 34930970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering Mechanism of a Supersaturated Ag-Cu Nanoalloy Film for Power Electronic Packaging.
    Jia Q; Zou G; Wang W; Ren H; Zhang H; Deng Z; Feng B; Liu L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16743-16752. PubMed ID: 32174102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications.
    Yoon JW; Back JH
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Green and Facile Microvia Filling Method via Printing and Sintering of Cu-Ag Core-Shell Nano-Microparticles.
    Yang G; Luo S; Lai T; Lai H; Luo B; Li Z; Zhang Y; Cui C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of novel
    Zhang Y; Liu Q; Liu Y; Tong J; Huang Z; Wu S; Liang P; Yang G; Cui C
    Nanotechnology; 2022 Apr; 33(28):. PubMed ID: 35030550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of conductive Cu thin film by the reaction of Cu nitrate with polymers.
    Yang S; Yoon JC; Yun JY; Kim YJ; Yu JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6342-4. PubMed ID: 24205657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Preparation of Ag Agglomerates Paste with Unique Sintering Behavior at Low Temperature.
    Li J; Xu Y; Meng Y; Yin Z; Zhao X; Wang Y; Suga T
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air abrasion before and/or after zirconia sintering: surface characterization, flexural strength, and resin cement bond strength.
    Abi-Rached FO; Martins SB; Almeida-Júnior AA; Adabo GL; Góes MS; Fonseca RG
    Oper Dent; 2015; 40(2):E66-75. PubMed ID: 25535785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sintering Bonding of SiC Particulate Reinforced Aluminum Metal Matrix Composites by Using Cu Nanoparticles and Liquid Ga in Air.
    Gao Z; Yin C; Cheng D; Feng J; He P; Niu J; Brnic J
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste.
    Li J; Yu X; Shi T; Cheng C; Fan J; Cheng S; Liao G; Tang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):255. PubMed ID: 28384997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on preparation and sintering properties of nano-silver-coated tin slurry.
    Yang H; You H
    R Soc Open Sci; 2023 Jun; 10(6):221492. PubMed ID: 37293359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model to understand the microflow-controlled sintering mechanism of metal particles at nanometer to micron scale.
    Yang G; Lai H; Lin W; Tong J; Cao J; Luo J; Zhang Y; Cui C
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34474405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdiffusion and Intermetallic Compounds at Al/Cu Interfaces in Al-50vol.%Cu Composite Prepared by Solid-State Sintering.
    Kim D; Kim K; Kwon H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cu Matrix Strengthened by TiH₂-C
    Thi N; Oanh H; Viet NH
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2687-2691. PubMed ID: 33500094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Crystal Structure, and Magnetic Properties of Oxalato-Copper(II) Complexes with 3,3-Bis(2-imidazolyl)propionic Acid, an Imidazole-Carboxylate Polyfunctional Ligand: From Mononuclear Entities to Ladder-Like Chains.
    Akhriff Y; Server-Carrió J; Sancho A; García-Lozano J; Escrivá E; Folgado JV; Soto L
    Inorg Chem; 1999 Mar; 38(6):1174-1185. PubMed ID: 11670900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning Ag nanoparticles by selective wetting for fine size Cu-Ag-Cu bonding.
    Liang Q; Li J; Li T; Liao G; Tang Z; Shi T
    Nanotechnology; 2020 Aug; 31(35):355302. PubMed ID: 32422626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.