These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38005030)

  • 1. Modified Lignin-Based Cement Solidifying Material for Improving Engineering Residual Soil.
    Yu X; Lu H; Peng J; Ren J; Wang Y; Chen J
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Stabilization of a New Type of Waste Solidifying Agent for Soft Soil.
    Shen J; Xu Y; Chen J; Wang Y
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Freeze-Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils.
    Yang Z; Wang Y; Li D; Li X; Liu X
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durability, Strength, and Erosion Resistance Assessment of Lignin Biopolymer Treated Soil.
    Bagheri P; Gratchev I; Son S; Rybachuk M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Design of a Novel Alkali-Activated Binder for Solidifying Silty Soft Clay and the Study of Its Solidification Mechanism.
    Jing Y; Zhang Y; Zhang L; Wang Q
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: An experimental study.
    Zou Z; Qin Y; Zhang T; Tan K
    J Environ Manage; 2023 Dec; 348():119315. PubMed ID: 37844401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Properties and Strengthening Mechanism of Dredged Silty Clay Stabilized by Cement and Steel Slag.
    Shi J; Wang S; Cao W; Su J; Zhang X
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Mechanical Properties and Mechanism of a Nickel-Iron Slag Cement-Based Composite under the Action of Sodium Sulfate.
    Zhang J; Zhou Y; Chen S; Meng J; Wang J
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the Effects of Quicklime on the Properties of Sulfoaluminate Cement-Ordinary Portland Cement-Mineral Admixture Repairing Composites and Their Sulphate Resistance.
    Shi C; Yang Y
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Performance and Solidification Mechanism of Multi-Source Solid-Waste-Based Soft Soil Solidification Materials.
    Qiu K; Zeng G; Shu B; Luo D
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on Solidification and Stabilization of Heavy-Metal-Contaminated Soil Using Cementitious Materials.
    Li X; Yang R; Li H; Yi H; Jing H
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials.
    Chen X; Feng W; Wen H; Duan W; Suo C; Xie M; Dong X
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dry-wet cycles on mechanical and leaching characteristics of magnesium phosphate cement-solidified Zn-contaminated soils.
    Wang Z; Wei B; Wu X; Zhu H; Wang Q; Xiong Z; Ding Z
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):18111-18119. PubMed ID: 33405163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength and Microscopic Mechanism of Cement-Fly Ash-Slag-Desulfurization Gypsum Solidified Mica Schist Weathered Soil.
    Shang Y; Cui Z; Li Y; Zhang Y; Cheng Y
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling effect of superfine zeolite and fiber on enhancing the long-term performance of stabilized/solidified Pb-contaminated clayey soils.
    Rozbahani M; Goodarzi AR; Lajevardi SH
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4203-4218. PubMed ID: 35965302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Lithium Slag on the Frost Resistance of Cement-Soil.
    Chen Z; Chen S; Liu L; Zhou Y
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Rapid Curing Pile Formation on Shoal Foundation and Its Bearing Characteristic.
    Li W; Liu F; Tan Y; Chen M; Cai Y; Qian J
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solidification/stabilization of lead-contaminated soils by phosphogypsum slag-based cementitious materials.
    Ren Z; Wang L; Wang H; Liu S; Liu M
    Sci Total Environ; 2023 Jan; 857(Pt 3):159552. PubMed ID: 36272471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties, Curing Mechanism, and Microscopic Experimental Study of Polypropylene Fiber Coordinated Fly Ash Modified Cement-Silty Soil.
    Lu L; Ma Q; Hu J; Li Q
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments.
    Cao X; Dermatas D; Xu X; Shen G
    Environ Sci Pollut Res Int; 2008 Mar; 15(2):120-7. PubMed ID: 18380230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.