These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38005114)

  • 1. Crankshaft High-Cycle Bending Fatigue Experiment Design Method Based on Unscented Kalman Filtering and the Theory of Crack Propagation.
    Que T; Jiang D; Sun S; Gong X
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research of the crankshaft high cycle bending fatigue experiment design method based on the modified unscented Kalman filtering algorithm and the SAFL approach.
    Rui S; Jiang D; Sun S; Gong X
    PLoS One; 2023; 18(9):e0291135. PubMed ID: 37699021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new stress field intensity model and its application in component high cycle fatigue research.
    Sun S
    PLoS One; 2020; 15(7):e0235323. PubMed ID: 32692776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation and experimental verification of fatigue crack propagation in high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Prog; 2023; 106(4):368504231211660. PubMed ID: 38058131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Rep; 2023 Sep; 13(1):14567. PubMed ID: 37667025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions.
    Han J; Yu H; Pan J; Chen R; Chen W
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data analysis of striation spacing, lifetime, and crack length in crankshaft ductile cast iron under cyclic bending loading through high-cycle fatigue regime.
    Hosseini SM; Azadi M; Ghasemi-Ghalebahman A; Jafari SM
    Data Brief; 2022 Dec; 45():108666. PubMed ID: 36426029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects.
    Xu Y; Zhu B; Zhang Z; Chen J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Component HCF Research Based on the Theory of Critical Distance and a Relative Stress Gradient Modification.
    Sun S; Yu X; Liu Z; Chen X
    PLoS One; 2016; 11(12):e0167722. PubMed ID: 28036338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors.
    Kuang Y; Wang Y; Xiang P; Tao L; Wang K; Fan F; Yang J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.
    Chen Y; Cui Y; Gong W
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29140284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation of the Contact Fatigue Characteristics of an RV Reducer Crankshaft, Considering the Hardness Gradients and Initial Residual Stress.
    Li X; Shao W; Tang J; Ding H; Zhou W
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an interface failure model to predict fatigue crack growth in an implanted metallic femoral stem.
    Chen J; Browne M; Taylor M; Gregson PJ
    Comput Methods Programs Biomed; 2004 Mar; 73(3):249-56. PubMed ID: 14980406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Analysis on Fatigue Crack Growth at Negative and Positive Stress Ratios.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.
    Zhang W; Bao Z; Jiang S; He J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.