These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 38005143)
1. Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks. Jahangir S; Vecstaudza J; Augurio A; Canciani E; Stipniece L; Locs J; Alini M; Serra T Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005143 [TBL] [Abstract][Full Text] [Related]
2. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
4. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346 [TBL] [Abstract][Full Text] [Related]
5. Suitability of Gelatin Methacrylate and Hydroxyapatite Hydrogels for 3D-Bioprinted Bone Tissue. Stolarov P; de Vries J; Stapleton S; Morris L; Martyniak K; Kean TJ Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473692 [TBL] [Abstract][Full Text] [Related]
6. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation. Martyniak K; Lokshina A; Cruz MA; Karimzadeh M; Kemp R; Kean TJ Acta Biomater; 2022 Oct; 152():221-234. PubMed ID: 36049623 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Idaszek J; Costantini M; Karlsen TA; Jaroszewicz J; Colosi C; Testa S; Fornetti E; Bernardini S; Seta M; Kasarełło K; Wrzesień R; Cannata S; Barbetta A; Gargioli C; Brinchman JE; Święszkowski W Biofabrication; 2019 Jul; 11(4):044101. PubMed ID: 31151123 [TBL] [Abstract][Full Text] [Related]
9. Surface-Modified Nano-Hydroxyapatite Uniformly Dispersed on High-Porous GelMA Scaffold Surfaces for Enhanced Osteochondral Regeneration. Zheng S; Li D; Liu Q; Tang C; Hu W; Ma S; Xu Y; Ma Y; Guo Y; Wei B; Du C; Wang L Int J Nanomedicine; 2023; 18():5907-5923. PubMed ID: 37886722 [TBL] [Abstract][Full Text] [Related]
10. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. Shopperly LK; Spinnen J; Krüger JP; Endres M; Sittinger M; Lam T; Kloke L; Dehne T J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2310-2322. PubMed ID: 35532378 [TBL] [Abstract][Full Text] [Related]
11. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
12. Strategies for the Codelivery of Osteoclasts and Mesenchymal Stem Cells in 3D-Printable Osteochondral Scaffolds. Jabari E; Choe RH; Kuzemchak B; Venable-Croft A; Choi JY; McLoughlin S; Packer JD; Fisher JP Tissue Eng Part C Methods; 2024 Aug; 30(8):323-334. PubMed ID: 39078319 [TBL] [Abstract][Full Text] [Related]
13. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894 [TBL] [Abstract][Full Text] [Related]
14. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink. Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617 [TBL] [Abstract][Full Text] [Related]
15. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
16. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Wenz A; Borchers K; Tovar GEM; Kluger PJ Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
18. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
20. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Tang P; Song P; Peng Z; Zhang B; Gui X; Wang Y; Liao X; Chen Z; Zhang Z; Fan Y; Li Z; Cen Y; Zhou C Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112423. PubMed ID: 34702546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]