These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38005162)

  • 1. A Polytetrafluoroethylene-Based Solvent-Free Procedure for the Manufacturing of Lithium-Ion Batteries.
    Wang X; Chen S; Zhang K; Huang L; Shen H; Chen Z; Rong C; Wang G; Jiang Z
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable Protein-Based Binder for Lithium-Sulfur Cathodes Processed by a Solvent-Free Dry-Coating Method.
    Schmidt F; Kirchhoff S; Jägle K; De A; Ehrling S; Härtel P; Dörfler S; Abendroth T; Schumm B; Althues H; Kaskel S
    ChemSusChem; 2022 Nov; 15(22):e202201320. PubMed ID: 36169208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Chemistry of the Cathodic Electrolyte Interphase for PTFE-Based Dry-Processed Cathodes.
    Tao R; Tan S; Meyer Iii HM; Sun XG; Steinhoff B; Sardo K; Bishtawi A; Gibbs T; Li J
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40488-40495. PubMed ID: 37595089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current and future lithium-ion battery manufacturing.
    Liu Y; Zhang R; Wang J; Wang Y
    iScience; 2021 Apr; 24(4):102332. PubMed ID: 33889825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithium-Ion Batteries.
    Kaur S; Santra S
    ChemistryOpen; 2022 Feb; 11(2):e202100209. PubMed ID: 35103411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application and Development of Silicon Anode Binders for Lithium-Ion Batteries.
    Shen H; Wang Q; Chen Z; Rong C; Chao D
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries.
    Zhang L; Qin X; Zhao S; Wang A; Luo J; Wang ZL; Kang F; Lin Z; Li B
    Adv Mater; 2020 Jun; 32(24):e1908445. PubMed ID: 32310315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-Free Fabrication of Thick Electrodes in Thermoplastic Binders for High Energy Density Lithium-Ion Batteries.
    Kim HM; Yoo BI; Yi JW; Choi MJ; Yoo JK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in Solvent-Free Methods for Manufacturing Electrodes and Electrolytes for Lithium-Based Batteries.
    Verdier N; Foran G; Lepage D; Prébé A; Aymé-Perrot D; Dollé M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries.
    Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries.
    Lee J; Lee T; Char K; Kim KJ; Choi JW
    Acc Chem Res; 2021 Sep; 54(17):3390-3402. PubMed ID: 34402619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi
    Oishi A; Tatara R; Togo E; Inoue H; Yasuno S; Komaba S
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51808-51818. PubMed ID: 36351777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SiO
    Liu H; Huangzhang E; Sun C; Fan Y; Ma Z; Zhao X; Nan J
    ACS Omega; 2021 Oct; 6(40):26805-26813. PubMed ID: 34661035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries.
    Yuca N; Zhao H; Song X; Dogdu MF; Yuan W; Fu Y; Battaglia VS; Xiao X; Liu G
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17111-8. PubMed ID: 25203598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spider Silk-Inspired Binder Design for Flexible Lithium-Ion Battery with High Durability.
    Wang Y; Zhu J; Chen A; Guo X; Cui H; Chen Z; Hou Y; Huang Z; Wang D; Liang G; Cao SC; Zhi C
    Adv Mater; 2023 Nov; 35(47):e2303165. PubMed ID: 37493625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries.
    Ludwig B; Zheng Z; Shou W; Wang Y; Pan H
    Sci Rep; 2016 Mar; 6():23150. PubMed ID: 26984488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Based Binder Development for Lithium-Ion Batteries.
    Dobryden I; Montanari C; Bhattacharjya D; Aydin J; Ahniyaz A
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Graphene Based Bi-Function Humidity Tolerant Binder for Lithium-Ion Battery.
    Dong S; Zhu K; Dong X; Dong G; Gao Y; Ye K; Yan J; Wang G; Cao D
    Small Methods; 2023 Jul; 7(7):e2201393. PubMed ID: 37086109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.