BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38005280)

  • 1. Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles.
    Boukoufi C; Boudier A; Clarot I
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanozyme Catalytic Turnover and Self-Limited Reactions.
    Zandieh M; Liu J
    ACS Nano; 2021 Oct; 15(10):15645-15655. PubMed ID: 34623130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the antioxidant activity of catalase immobilized on gold nanoparticles via specific and non-specific adsorption.
    Czechowska E; Ranoszek-Soliwoda K; Tomaszewska E; Pudlarz A; Celichowski G; Gralak-Zwolenik D; Szemraj J; Grobelny J
    Colloids Surf B Biointerfaces; 2018 Nov; 171():707-714. PubMed ID: 30054048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance.
    Chen X; Tian X; Su B; Huang Z; Chen X; Oyama M
    Dalton Trans; 2014 May; 43(20):7449-54. PubMed ID: 24573020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the peroxidase-like activity and stability of gold nanoparticles by coating a partial iron phosphate shell.
    Huang Z; Liu B; Liu J
    Nanoscale; 2020 Nov; 12(44):22467-22472. PubMed ID: 33150912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-enhanced peroxidase-like activity of gold nanoparticles.
    Shah J; Purohit R; Singh R; Karakoti AS; Singh S
    J Colloid Interface Sci; 2015 Oct; 456():100-7. PubMed ID: 26111515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols.
    Chang CC; Hsu TL; Chen CP; Chen CY
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32882936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(N-2-hydroxypropylmethacrylamide)-capped gold nanoparticles as nanozymes with peroxidase-mimicking performance for the colorimetric monitoring of serum homocysteine.
    Cheng C; Qiao J; Zhao Z; Zhang H; Qi L
    Anal Bioanal Chem; 2023 Feb; 415(5):953-960. PubMed ID: 36571589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues.
    Hu Y; Cheng H; Zhao X; Wu J; Muhammad F; Lin S; He J; Zhou L; Zhang C; Deng Y; Wang P; Zhou Z; Nie S; Wei H
    ACS Nano; 2017 Jun; 11(6):5558-5566. PubMed ID: 28549217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(N,N-dimethylacrylamide)-stabilized gold nanoparticles as nanozymes with enhancement of catalytic activity for detection of lomefloxacin.
    Ma Q; Qiao J; Liu Y; Qi L
    Anal Bioanal Chem; 2022 Aug; 414(20):6047-6054. PubMed ID: 35687152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic.
    Liu Y; Chen Z; Shao Z; Guo R
    Chem Commun (Camb); 2021 Apr; 57(27):3399-3402. PubMed ID: 33686388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles.
    Pudlarz AM; Czechowska E; Ranoszek-Soliwoda K; Tomaszewska E; Celichowski G; Grobelny J; Szemraj J
    Appl Biochem Biotechnol; 2018 Jul; 185(3):717-735. PubMed ID: 29299755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanozymes: Engineered Gold Nanoparticles Exhibit Tunable Plasmon-Enhanced Peroxidase-Mimicking Activity.
    Zhang Y; Villarreal E; Li GG; Wang W; Wang H
    J Phys Chem Lett; 2020 Nov; 11(21):9321-9328. PubMed ID: 33089980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of core-in-shell Au@N-HCNs nanozymes for tumor therapy.
    Wang Z; Xu Z; Xu X; Xi J; Han J; Fan L; Guo R
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112671. PubMed ID: 35792529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon.
    Bhagat S; Srikanth Vallabani NV; Shutthanandan V; Bowden M; Karakoti AS; Singh S
    J Colloid Interface Sci; 2018 Mar; 513():831-842. PubMed ID: 29223890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics.
    Drozd M; Pietrzak M; Pytlos J; Malinowska E
    Anal Chim Acta; 2016 Dec; 948():80-89. PubMed ID: 27871613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the role of ATP in amplification of intrinsic peroxidase-like activity of gold nanoparticles.
    Shah J; Singh S
    3 Biotech; 2018 Jan; 8(1):67. PubMed ID: 29354378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multifunctional nanozyme-based enhanced system for tert-butyl hydroquinone assay by surface-enhanced Raman scattering.
    Yang D; Li Q; Zhang Q; Wang Y; Li H; Tammina SK; Yang Y
    Mikrochim Acta; 2021 Dec; 189(1):29. PubMed ID: 34910256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing.
    Wu N; Wang YT; Wang XY; Guo FN; Wen H; Yang T; Wang JH
    Anal Chim Acta; 2019 Dec; 1091():69-75. PubMed ID: 31679576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.