These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38005474)

  • 1. Design and Fabrication of a High-Sensitivity and Wideband Cymbal Hydrophone.
    Kim D; Roh Y
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of a Wideband Cymbal Transducer for Underwater Sensor Networks.
    Shim H; Roh Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Dual-Layer Structure for Cymbal Transducer Arrays to Achieve a Wider Bandwidth.
    Mudiyala J; Shim H; Kim D; Roh Y
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analyzing of underwater receiving sensitivity of PMN-0.33PT single crystal cymbal hydrophone.
    Li Z; Huang A; Luan G; Zhang J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e759-62. PubMed ID: 16814344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Broadband Array Pattern of Underwater Cymbal Transducers.
    Kim D; Shim H; Oh C; Kim K; Seo H; Roh Y
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of a Potting Material and Method for Broadband Underwater Cymbal Arrays.
    Wang W; Shim H; Roh Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cymbal piezoelectric composite underwater acoustic transducer.
    Li D; Wu M; Oyang P; Xu X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e685-7. PubMed ID: 16793099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent Circuit to Analyze the Transmitting Characteristics of a Cymbal Array.
    Shim H; Kim K; Seo H; Roh Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Underwater Testing of a Vector Hydrophone Comprising a Triaxial Piezoelectric Accelerometer and Spherical Hydrophone.
    Roh T; Yeo HG; Joh C; Roh Y; Kim K; Seo HS; Choi H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and Experimental Studies on Sensitivity and Bandwidth of Thickness-Mode Driving Hydrophone Utilizing A 2-2 Piezoelectric Single Crystal Composite.
    Je Y; Sim M; Cho Y; Lee SG; Seo HS
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic hydrophone for pressure determination of shock wave pulses.
    Etienne J; Filipczyński L; Kujawska T; Zienkiewicz B
    Ultrasound Med Biol; 1997; 23(5):747-54. PubMed ID: 9253822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of ultrasonic fields by deconvolving the hydrophone aperture effects. II. Experiment.
    Boutkedjirt T; Reibold R
    Ultrasonics; 2002 Aug; 39(9):641-8. PubMed ID: 12206631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz.
    Oliveira EG; Costa-Felix RP; Machado JC
    Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison of Two Configurations for a Dual-Resonance Cymbal Transducer.
    Feeney A; Lucas M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):489-496. PubMed ID: 29505415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design considerations and performance of MEMS acoustoelectric ultrasound detectors.
    Wang Z; Ingram P; Greenlee CL; Olafsson R; Norwood RA; Witte RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1906-16. PubMed ID: 24658721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and underwater characterization of cymbal transducers and arrays.
    Zhang J; Hladky-Hennion AC; Hughes WJ; Newnham RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):560-8. PubMed ID: 11370370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.