These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38005474)

  • 61. Sensitivity-Bandwidth Optimization of PMUT with Acoustical Matching Using Finite Element Method.
    He LM; Xu WJ; Wang Y; Zhou J; Ren JY
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336478
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity.
    Svilainis L; Chaziachmetovas A; Kaskonas P; Gomez Alvarez-Arenas TE
    Ultrasonics; 2023 Aug; 133():107025. PubMed ID: 37159982
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Are current hydrophone low frequency response standards acceptable for measuring mechanical/cavitation indices?
    Harris GR
    Ultrasonics; 1996 Aug; 34(6):649-54. PubMed ID: 8844965
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers.
    Wilkens V; Sonntag S; Georg O
    J Acoust Soc Am; 2016 Mar; 139(3):1319-32. PubMed ID: 27036269
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flextensional ultrasonic piezoelectric micro-motor.
    Leinvuo JT; Wilson SA; Whatmore RW; Cain MG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2357-66. PubMed ID: 17186918
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-Sensitivity Piezoelectric MEMS Accelerometer for Vector Hydrophones.
    Shi S; Ma L; Kang K; Zhu J; Hu J; Ma H; Pang Y; Wang Z
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630134
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers.
    Chan HL; Chiang KS; Price DC; Gardner JL; Brinch J
    Phys Med Biol; 1989 Nov; 34(11):1609-22. PubMed ID: 2587628
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements.
    Rad AJ; Ueberle F; Krueger K
    Rev Sci Instrum; 2014 Jan; 85(1):014902. PubMed ID: 24517798
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Research on Direction of Arrival Estimation Based on Self-Contained MEMS Vector Hydrophone.
    Zhu S; Zhang G; Wu D; Liang X; Zhang Y; Lv T; Liu Y; Chen P; Zhang W
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208360
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity.
    Lee H; Choi S; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1033-44. PubMed ID: 20815440
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones.
    Wear K; Liu Y; Gammell PM; Maruvada S; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):152-64. PubMed ID: 25585399
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency responses.
    Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):256-61. PubMed ID: 18263144
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrophone spatial averaging corrections from 1 to 40 MHz.
    Radulescu EG; Lewin PA; Goldstein A; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1575-80. PubMed ID: 11800120
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2325-33. PubMed ID: 22083766
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control.
    Park BH; Choi HB; Seo HS; Je Y; Yi H; Park KK
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617118
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cost-effective shock wave hydrophones.
    Schafer ME
    J Stone Dis; 1993 Apr; 5(2):73-6. PubMed ID: 10148592
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 100 MHz bandwidth planar laser-generated ultrasound source for hydrophone calibration.
    Rajagopal S; Cox BT
    Ultrasonics; 2020 Dec; 108():106218. PubMed ID: 32721650
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
    Wear KA; Shah A; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1257-1267. PubMed ID: 35143394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.