These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38005477)

  • 1. Leak State Detection and Size Identification for Fluid Pipelines with a Novel Acoustic Emission Intensity Index and Random Forest.
    Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reliable Pipeline Leak Detection Method Using Acoustic Emission with Time Difference of Arrival and Kolmogorov-Smirnov Test.
    Nguyen DT; Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Leak Detection for a Gas Pipeline Using a
    Quy TB; Kim JM
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms.
    Ullah N; Ahmed Z; Kim JM
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning.
    Ahmad S; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov-Smirnov Test.
    Rai A; Ahmad Z; Hasan MJ; Kim JM
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Enhancement of Leak Detection Performance for Water Pipelines through the Renovation of Training Data.
    Luong TTN; Kim JM
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hybrid Leak Localization Approach Using Acoustic Emission for Industrial Pipelines.
    Gao Y; Piltan F; Kim JM
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High Sensitivity AlN-Based MEMS Hydrophone for Pipeline Leak Monitoring.
    Zhi B; Wu Z; Chen C; Chen M; Ding X; Lou L
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology.
    Pan S; Xu Z; Li D; Lu D
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Propagation and Distribution Characteristics of Leakage Acoustic Waves in Water Supply Pipelines.
    Li Y; Zhou Y; Fu M; Zhou F; Chi Z; Wang W
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for simulating the entire leaking process and calculating the liquid leakage volume of a damaged pressurized pipeline.
    He G; Liang Y; Li Y; Wu M; Sun L; Xie C; Li F
    J Hazard Mater; 2017 Jun; 332():19-32. PubMed ID: 28279870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Leak-Induced Pipeline Vibrations Using Fiber-Optic Distributed Acoustic Sensing.
    Stajanca P; Chruscicki S; Homann T; Seifert S; Schmidt D; Habib A
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30154358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Method for the Pattern Recognition of Acoustic Emission Signals Using Blind Source Separation and a CNN for Online Corrosion Monitoring in Pipelines with Interference from Flow-Induced Noise.
    Wang X; Xu S; Zhang Y; Tu Y; Peng M
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant false alarm rate detection of pipeline leakage based on acoustic sensors.
    An G; Huang Z; Li Y
    Sci Rep; 2023 Aug; 13(1):14149. PubMed ID: 37644105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure Severity Prediction for Protective-Coating Disbondment via the Classification of Acoustic Emission Signals.
    Rahman NAA; May Z; Jaffari R; Hanif M
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of Leak Detection in PVC Water Pipes Using Ceramic, Polymer, and Surface Acoustic Wave Sensors.
    Hamamed N; Mechri C; Mhammedi T; Yaakoubi N; El Guerjouma R; Bouaziz S; Haddar M
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of damage in self-consolidating rubberized concrete using acoustic emission intensity analysis.
    Abouhussien AA; Hassan AAA
    Ultrasonics; 2020 Jan; 100():105999. PubMed ID: 31494309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Frequency Distribution Map-Based Convolutional Neural Network (CNN) Model for Underwater Pipeline Leakage Detection Using Acoustic Signals.
    Xie Y; Xiao Y; Liu X; Liu G; Jiang W; Qin J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.