BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38005519)

  • 1. Simultaneous Sensing and Actuating Capabilities of a Triple-Layer Biomimetic Muscle for Soft Robotics.
    García-Córdova F; Guerrero-González A; Zueco J; Cabrera-Lozoya A
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage.
    Khuyen NQ; Kiefer R; Zondaka Z; Anbarjafari G; Peikolainen AL; Otero TF; Tamm T
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32927713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel.
    Zhao Y; Lo CY; Ruan L; Pi CH; Kim C; Alsaid Y; Frenkel I; Rico R; Tsao TC; He X
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current.
    Martinez JG; Otero TF
    J Phys Chem B; 2012 Aug; 116(30):9223-30. PubMed ID: 22735073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature.
    Otero TF; Sanchez JJ; Martinez JG
    J Phys Chem B; 2012 May; 116(17):5279-90. PubMed ID: 22455612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel-Driven Redox Reactions in Electrolyte-Free Polymer Actuators for Soft Robotics.
    Sarikaya S; Gardea F; Auletta JT; Langrock A; Kim H; Mackie DM; Naraghi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31803-31811. PubMed ID: 37345639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knitting from Nature: Self-Sensing Soft Robotics Enabled by All-in-One Knit Architectures.
    Yang M; Sun F; Hu X; Sun F
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44294-44304. PubMed ID: 37695689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing and tactile artificial muscles from reactive materials.
    Conzuelo LV; Arias-Pardilla J; Cauich-Rodríguez JV; Smit MA; Otero TF
    Sensors (Basel); 2010; 10(4):2638-74. PubMed ID: 22319265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What is an artificial muscle? A comparison of soft actuators to biological muscles.
    Higueras-Ruiz DR; Nishikawa K; Feigenbaum H; Shafer M
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34792040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.
    Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S
    ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-Perceptive Actuators for Tactile Soft Robots and Visual Logic Devices.
    Zhou P; Lin J; Zhang W; Luo Z; Chen L
    Adv Sci (Weinh); 2022 Feb; 9(5):e2104270. PubMed ID: 34913616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired polypyrrole based fibrillary artificial muscle with actuation and intrinsic sensing capabilities.
    Beregoi M; Beaumont S; Evanghelidis A; Otero TF; Enculescu I
    Sci Rep; 2022 Sep; 12(1):15019. PubMed ID: 36056150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive conducting polymers as actuating sensors and tactile muscles.
    Otero TF
    Bioinspir Biomim; 2008 Sep; 3(3):035004. PubMed ID: 18667760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers.
    Ly K; Kellaris N; McMorris D; Johnson BK; Acome E; Sundaram V; Naris M; Humbert JS; Rentschler ME; Keplinger C; Correll N
    Soft Robot; 2021 Dec; 8(6):673-686. PubMed ID: 33001742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work behaviors of artificial muscle based on cation driven polypyrrole.
    Fujisue H; Sendai T; Yamato K; Takashima W; Kaneto K
    Bioinspir Biomim; 2007 Jun; 2(2):S1-5. PubMed ID: 17671325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities.
    Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C
    Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-sensing coaxial muscle fibers with bi-lengthwise actuation.
    Dong L; Ren M; Wang Y; Qiao J; Wu Y; He J; Wei X; Di J; Li Q
    Mater Horiz; 2021 Aug; 8(9):2541-2552. PubMed ID: 34870310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Muscles Powered by Glucose.
    Mashayekhi Mazar F; Martinez JG; Tyagi M; Alijanianzadeh M; Turner APF; Jager EWH
    Adv Mater; 2019 Aug; 31(32):e1901677. PubMed ID: 31215110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric Bilayer Muscles: Cooperative Actuation, Dynamic Hysteresis, and Creeping in NaPF6 Aqueous Solutions.
    Fuchiwaki M; Martinez JG; Fernandez Otero T
    ChemistryOpen; 2016 Aug; 5(4):369-74. PubMed ID: 27547647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.