These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38005529)

  • 1. Design and Construction of the Optical Bench Interferometer for the Taiji Program.
    Tao W; Deng X; Diao Y; Gao R; Qi K; Wang S; Luo Z; Sha W; Liu H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and analysis of two-dimensional point-ahead angle mechanism for space gravitational-wave detection.
    Zhu W; Xie Y; Qian Y; Jia J; Zhang L; Wang X
    Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38350474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of Laser Heterodyne Interferometric Bench for Chinese Spaceborne Gravitational Wave Detection Missions.
    Xu X; Liu H; Tan Y
    Research (Wash D C); 2024; 7():0302. PubMed ID: 38357699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-noise analog frontend design for the Taiji phasemeter prototype.
    Liu HS; Yu T; Luo ZR
    Rev Sci Instrum; 2021 May; 92(5):054501. PubMed ID: 34243339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves.
    Zhao Y; Shen J; Fang C; Liu H; Wang Z; Luo Z
    Opt Express; 2020 Aug; 28(17):25545-25561. PubMed ID: 32907072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser acquisition experimental demonstration for space gravitational wave detection missions.
    Gao R; Liu H; Zhao Y; Luo Z; Shen J; Jin G
    Opt Express; 2021 Mar; 29(5):6368-6383. PubMed ID: 33726160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves.
    Zhao Y; Shen J; Fang C; Wang Z; Gao R; Sha W
    Appl Opt; 2021 Jan; 60(2):438-444. PubMed ID: 33448970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions.
    Dong YH; Liu HS; Luo ZR; Li YQ; Jin G
    Rev Sci Instrum; 2014 Jul; 85(7):074501. PubMed ID: 25085155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A construction method of the quasi-monolithic compact interferometer based on UV-adhesive bonding.
    Lin X; Yan H; Ma Y; Zhou Z
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37470703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical fiber couplers for precision spaceborne metrology.
    Killow CJ; Fitzsimons ED; Perreur-Lloyd M; Robertson DI; Ward H; Bogenstahl J
    Appl Opt; 2016 Apr; 55(10):2724-31. PubMed ID: 27139678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic, high-speed, high-precision acquisition scheme with QPD for the Taiji program.
    Gao R; Liu H; Zhao Y; Luo Z; Jin G
    Opt Express; 2021 Jan; 29(2):821-836. PubMed ID: 33726310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Detection Precision of the Taiji Program by Frequency Setting Strategy Based on a Hierarchical Optimization Algorithm.
    Zhang J; Yang Z; Ma X; Peng X; Gao C; Zhao M; Tang W
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment of an interferometric gravitational wave detector.
    Fritschel P; Mavalvala N; Shoemaker D; Sigg D; Zucker M; González G
    Appl Opt; 1998 Oct; 37(28):6734-47. PubMed ID: 18301487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji.
    Zhao ZW; Wang LF; Zhang JF; Zhang X
    Sci Bull (Beijing); 2020 Aug; 65(16):1340-1348. PubMed ID: 36659212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on High-Precision Resonant Capacitance Bridge Based on Multiple Transformers.
    Liu X; Chen Y; Wang L; Yu T; Wang Z; Xue K; Sui Y; Chen Y
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of coupling between optical aberration and tilt-to-length noise in a space-based gravitational wave telescope.
    Lin H; Li J; Huang Y; Yu M; Luo J; Wang Z; Wu Y
    Opt Express; 2023 Jan; 31(3):4367-4378. PubMed ID: 36785407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters.
    Hsu MT; Littler IC; Shaddock DA; Herrmann J; Warrington RB; Gray MB
    Opt Lett; 2010 Dec; 35(24):4202-4. PubMed ID: 21165137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous State Estimation and Observability Analysis for the Taiji Formation Using High-Precision Optical Sensors.
    Wen B; Tang W; Peng X; Yang Z
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact high-precision periodic-error-free heterodyne interferometer.
    Joo KN; Clark E; Zhang Y; Ellis JD; Guzmán F
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):B11-B18. PubMed ID: 32902415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-precision mechanical absolute-rotation sensor.
    Venkateswara K; Hagedorn CA; Turner MD; Arp T; Gundlach JH
    Rev Sci Instrum; 2014 Jan; 85(1):015005. PubMed ID: 24517804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.