These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38005596)

  • 1. Smart Buildings: Water Leakage Detection Using TinyML.
    Atanane O; Mourhir A; Benamar N; Zennaro M
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning.
    Alajlan NN; Ibrahim DM
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource Usage and Performance Trade-offs for Machine Learning Models in Smart Environments.
    Preuveneers D; Tsingenopoulos I; Joosen W
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A standalone computing system to classify human foot movements using machine learning techniques for ankle-foot prosthesis control.
    Negi S; Sharma N
    Comput Methods Biomech Biomed Engin; 2022 Sep; 25(12):1370-1380. PubMed ID: 34866501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Stride Length Estimation Using Embedded Machine Learning.
    Verbiest JR; Bonnechère B; Saeys W; Van de Walle P; Truijen S; Meyns P
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Machine Learning System for Defect Detection on Cylindrical Metal Surfaces.
    Huang YC; Hung KC; Lin JC
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML.
    Brennan D; Galvin P
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications.
    Alajlan NN; Ibrahim DM
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD.
    Yazdan SA; Ahmad R; Iqbal N; Rizwan A; Khan AN; Kim DH
    Tomography; 2022 Jul; 8(4):1905-1927. PubMed ID: 35894026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge deep learning for neural implants: a case study of seizure detection and prediction.
    Liu X; Richardson AG
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33794507
    [No Abstract]   [Full Text] [Related]  

  • 11. LidSonic V2.0: A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the Visually Impaired.
    Busaeed S; Katib I; Albeshri A; Corchado JM; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tiny-Machine-Learning-Based Supply Canal Surface Condition Monitoring.
    Huang C; Sun X; Zhang Y
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Impact Localization Solution Using Embedded Intelligence-Methodology and Experimental Verification via a Resource-Constrained IoT Device.
    Katsidimas I; Kostopoulos V; Kotzakolios T; Nikoletseas SE; Panagiotou SH; Tsakonas C
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.
    Wang Z; Hu M; Zhai G
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms.
    Kulkarni U; S M M; Gurlahosur SV; Bhogar G
    Neural Netw; 2021 Apr; 136():28-39. PubMed ID: 33429131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A TinyML Deep Learning Approach for Indoor Tracking of Assets.
    Avellaneda D; Mendez D; Fortino G
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and Qualitative Analysis of 18 Deep Convolutional Neural Network (CNN) Models with Transfer Learning to Diagnose COVID-19 on Chest X-Ray (CXR) Images.
    Chow LS; Tang GS; Solihin MI; Gowdh NM; Ramli N; Rahmat K
    SN Comput Sci; 2023; 4(2):141. PubMed ID: 36624807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Combined Semi-Supervised Deep Learning Method for Oil Leak Detection in Pipelines Using IIoT at the Edge.
    Spandonidis C; Theodoropoulos P; Giannopoulos F
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Smart Home Security: Anomaly Detection and Face Recognition in Smart Home IoT Devices Using Logit-Boosted CNN Models.
    Rahim A; Zhong Y; Ahmad T; Ahmad S; Pławiak P; Hammad M
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Neural Network Compression by In-Parallel Pruning-Quantization.
    Tung F; Mori G
    IEEE Trans Pattern Anal Mach Intell; 2020 Mar; 42(3):568-579. PubMed ID: 30561340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.