These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38005605)

  • 41. The sensing characteristics of plasmonic waveguide with a ring resonator.
    Wu T; Liu Y; Yu Z; Peng Y; Shu C; Ye H
    Opt Express; 2014 Apr; 22(7):7669-77. PubMed ID: 24718142
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photonic crystal based interferometric design for label-free all-optical sensing applications.
    Giden IH
    Opt Express; 2022 Jun; 30(12):21679-21686. PubMed ID: 36224881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. -1-5753907Highly Sensitive Plasmonic Sensor Based on a Dual-Side Polished Photonic Crystal Fiber for Component Content Sensing Applications.
    Chen N; Chang M; Zhang X; Zhou J; Lu X; Zhuang S
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31717446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-Narrow SPP Generation from Ag Grating.
    Stocker G; Spettel J; Dao TD; Tortschanoff A; Jannesari R; Pühringer G; Saeidi P; Dubois F; Fleury C; Consani C; Grille T; Aschauer E; Jakoby B
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic Micro-Channel Assisted Photonic Crystal Fiber Based Highly Sensitive Sensor for Multi-Analyte Detection.
    Kamrunnahar QM; Haider F; Aoni RA; Mou JR; Shifa S; Begum F; Abdul-Rashid HA; Ahmed R
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High confidence plasmonic sensor based on photonic crystal fibers with a U-shaped detection channel.
    Zhu W; Yi Y; Yi Z; Bian L; Yang H; Zhang J; Yu Y; Liu C; Li G; Wu X
    Phys Chem Chem Phys; 2023 Mar; 25(12):8583-8591. PubMed ID: 36883940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm.
    Liu B; Chen S; Zhang J; Yao X; Zhong J; Lin H; Huang T; Yang Z; Zhu J; Liu S; Lienau C; Wang L; Ren B
    Adv Mater; 2018 Mar; 30(12):e1706031. PubMed ID: 29405444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Nanosensor Based on a Metal-Insulator-Metal Bus Waveguide with a Stub Coupled with a Racetrack Ring Resonator.
    Shi H; Yan S; Yang X; Wu X; Wu W; Hua E
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO
    Khonina SN; Kazanskiy NL; Butt MA; Kaźmierczak A; Piramidowicz R
    Opt Express; 2021 May; 29(11):16584-16594. PubMed ID: 34154218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity.
    Chen L; Liu Y; Yu Z; Wu D; Ma R; Zhang Y; Ye H
    Opt Express; 2016 May; 24(9):9975-83. PubMed ID: 27137607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S; Zhao T; Yu J; Pan D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935140
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic nanosensor based on multiple independently tunable Fano resonances.
    Cheng L; Wang Z; He X; Cao P
    Beilstein J Nanotechnol; 2019; 10():2527-2537. PubMed ID: 31921531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical bio-chemical sensors on SNOW ring resonators.
    Khorasaninejad M; Clarke N; Anantram MP; Saini SS
    Opt Express; 2011 Aug; 19(18):17575-84. PubMed ID: 21935124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneously performing optical and electrical responses from a plasmonic sensor based on gold/silicon Schottky junction.
    Sui B; Xu Y; Wang Z; Zhang C; Qin L; Li X; Wu S
    Opt Express; 2019 Dec; 27(26):38382-38390. PubMed ID: 31878606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
    Taliercio T; Guilengui VN; Cerutti L; Rodriguez JB; Barho F; Rodrigo MJ; Gonzalez-Posada F; Tournié E; Niehle M; Trampert A
    Opt Express; 2015 Nov; 23(23):29423-33. PubMed ID: 26698426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Research on sensing characteristics of third-order runway series symmetric microring resonator based on hybrid plasma waveguide and metal insulator metal.
    Li X; Li X; Zhang H; Chen S; Liu S; Li Y
    J Biophotonics; 2023 Jan; 16(1):e202200204. PubMed ID: 36075882
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sub-diffractional waveguiding by mid-infrared plasmonic resonators in semiconductor nanowires.
    Tervo EJ; Boyuk DS; Cola BA; Zhang ZM; Filler MA
    Nanoscale; 2018 Mar; 10(12):5708-5716. PubMed ID: 29537041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase-coupled plasmon-induced transparency.
    Kekatpure RD; Barnard ES; Cai W; Brongersma ML
    Phys Rev Lett; 2010 Jun; 104(24):243902. PubMed ID: 20867303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.