BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38005629)

  • 41. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Artifact Detection and Restoration in Histology Images With Stain-Style and Structural Preservation.
    Ke J; Liu K; Sun Y; Xue Y; Huang J; Lu Y; Dai J; Chen Y; Han X; Shen Y; Shen D
    IEEE Trans Med Imaging; 2023 Dec; 42(12):3487-3500. PubMed ID: 37352087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully automated cardiac MRI segmentation using dilated residual network.
    Ahmad F; Hou W; Xiong J; Xia Z
    Med Phys; 2023 Apr; 50(4):2162-2175. PubMed ID: 36395472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.
    Kim B; Shim H; Baek J
    Med Phys; 2022 Dec; 49(12):7497-7515. PubMed ID: 35880806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks.
    Zhu XL; Shen HB; Sun H; Duan LX; Xu YY
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1303-1311. PubMed ID: 35290645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.
    Opfer R; Krüger J; Spies L; Ostwaldt AC; Kitzler HH; Schippling S; Buchert R
    Eur Radiol; 2023 Mar; 33(3):1852-1861. PubMed ID: 36264314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
    Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V
    Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies.
    Andresen J; Kepp T; Ehrhardt J; Burchard CV; Roider J; Handels H
    Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):699-710. PubMed ID: 35239133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
    Hasan MK; Calvet L; Rabbani N; Bartoli A
    Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deep convolutional neural network for hippocampus segmentation with boundary region refinement.
    He G; Zhang G; Zhou L; Zhu H
    Med Biol Eng Comput; 2023 Sep; 61(9):2329-2339. PubMed ID: 37067776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MTU: A multi-tasking U-net with hybrid convolutional learning and attention modules for cancer classification and gland Segmentation in Colon Histopathological Images.
    Dabass M; Vashisth S; Vig R
    Comput Biol Med; 2022 Nov; 150():106095. PubMed ID: 36179516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.