These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 38005650)
1. Assessment of an IMU-Based Experimental Set-Up for Upper Limb Motion in Obese Subjects. Cerfoglio S; Lopomo NF; Capodaglio P; Scalona E; Monfrini R; Verme F; Galli M; Cimolin V Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005650 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Upper Body and Lower Limbs Kinematics through an Cerfoglio S; Capodaglio P; Rossi P; Conforti I; D'Angeli V; Milani E; Galli M; Cimolin V Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448005 [TBL] [Abstract][Full Text] [Related]
3. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles. Goreham JA; MacLean KFE; Ladouceur M J Biomech; 2022 Mar; 134():111000. PubMed ID: 35217243 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users. Wang SL; Civillico G; Niswander W; Kontson KL Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458943 [TBL] [Abstract][Full Text] [Related]
5. Validation of the Perception Neuron system for full-body motion capture. Choo CZY; Chow JY; Komar J PLoS One; 2022; 17(1):e0262730. PubMed ID: 35061781 [TBL] [Abstract][Full Text] [Related]
6. Are Wearable Sensors Valid and Reliable for Studying the Baseball Pitching Motion? An Independent Comparison With Marker-Based Motion Capture. Camp CL; Loushin S; Nezlek S; Fiegen AP; Christoffer D; Kaufman K Am J Sports Med; 2021 Sep; 49(11):3094-3101. PubMed ID: 34339317 [TBL] [Abstract][Full Text] [Related]
7. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors. Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600 [TBL] [Abstract][Full Text] [Related]
8. Validation of Inertial Measurement Units for Upper Body Kinematics. Morrow MMB; Lowndes B; Fortune E; Kaufman KR; Hallbeck MS J Appl Biomech; 2017 Jul; 33(3):227-232. PubMed ID: 27918696 [TBL] [Abstract][Full Text] [Related]
9. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Nam HS; Lee WH; Seo HG; Kim YJ; Bang MS; Kim S Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013966 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study. Rigoni M; Gill S; Babazadeh S; Elsewaisy O; Gillies H; Nguyen N; Pathirana PN; Page R Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013931 [TBL] [Abstract][Full Text] [Related]
11. Validation of an IMU Suit for Military-Based Tasks. Mavor MP; Ross GB; Clouthier AL; Karakolis T; Graham RB Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751920 [TBL] [Abstract][Full Text] [Related]
12. Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery. Boddy KJ; Marsh JA; Caravan A; Lindley KE; Scheffey JO; O'Connell ME PeerJ; 2019; 7():e6365. PubMed ID: 30697497 [TBL] [Abstract][Full Text] [Related]
13. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787 [TBL] [Abstract][Full Text] [Related]
14. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
15. Fetlock Joint Angle Pattern and Range of Motion Quantification Using Two Synchronized Wearable Inertial Sensors per Limb in Sound Horses and Horses with Single Limb Naturally Occurring Lameness. Pagliara E; Marenchino M; Antenucci L; Costantini M; Zoppi G; Giacobini MDL; Bullone M; Riccio B; Bertuglia A Vet Sci; 2022 Aug; 9(9):. PubMed ID: 36136672 [TBL] [Abstract][Full Text] [Related]
16. Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients. Kayaalp ME; Agres AN; Reichmann J; Bashkuev M; Duda GN; Becker R Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783551 [TBL] [Abstract][Full Text] [Related]
17. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices. Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097 [TBL] [Abstract][Full Text] [Related]
18. Assessment of shoulder range of motion using a commercially available wearable sensor-a validation study. Chan LYT; Chua CS; Chou SM; Seah RYB; Huang Y; Luo Y; Dacy L; Bin Abd Razak HR Mhealth; 2022; 8():30. PubMed ID: 36338310 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Scapulothoracic, Glenohumeral, and Elbow Motion in Adhesive Capsulitis by Means of Inertial Sensor Technology: A Within-Session, Intra-Operator and Inter-Operator Reliability and Agreement Study. De Baets L; Vanbrabant S; Dierickx C; van der Straaten R; Timmermans A Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041375 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities. Mihcin S Biomed Tech (Berl); 2022 Jun; 67(3):185-199. PubMed ID: 35575784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]