These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 38006109)
1. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks. Możejko-Ciesielska J; Ray S; Sankhyan S Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006109 [TBL] [Abstract][Full Text] [Related]
2. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Chavan S; Yadav B; Tyagi RD; Drogui P Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565 [TBL] [Abstract][Full Text] [Related]
3. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Obruča S; Dvořák P; Sedláček P; Koller M; Sedlář K; Pernicová I; Šafránek D Biotechnol Adv; 2022 Sep; 58():107906. PubMed ID: 35033587 [TBL] [Abstract][Full Text] [Related]
4. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526 [TBL] [Abstract][Full Text] [Related]
5. Polyhydroxyalkanoates from extremophiles: A review. Obulisamy PK; Mehariya S Bioresour Technol; 2021 Apr; 325():124653. PubMed ID: 33465644 [TBL] [Abstract][Full Text] [Related]
6. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760 [TBL] [Abstract][Full Text] [Related]
7. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. González-Rojo S; Paniagua-García AI; Díez-Antolínez R Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203509 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of RuBisCO form I and II genes in Ranaivoarisoa TO; Bai W; Karthikeyan R; Steele H; Silberman M; Olabode J; Conners E; Gallagher B; Bose A Appl Environ Microbiol; 2024 Sep; 90(9):e0143824. PubMed ID: 39162566 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Vigneswari S; Noor MSM; Amelia TSM; Balakrishnan K; Adnan A; Bhubalan K; Amirul AA; Ramakrishna S Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440551 [TBL] [Abstract][Full Text] [Related]
10. Polyhydroxyalkanoate Production by Methanotrophs: Recent Updates and Perspectives. Patel SKS; Singh D; Pant D; Gupta RK; Busi S; Singh RV; Lee JK Polymers (Basel); 2024 Sep; 16(18):. PubMed ID: 39339034 [TBL] [Abstract][Full Text] [Related]
11. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. Ali Z; Abdullah M; Yasin MT; Amanat K; Ahmad K; Ahmed I; Qaisrani MM; Khan J Environ Res; 2024 Mar; 244():117949. PubMed ID: 38109961 [TBL] [Abstract][Full Text] [Related]
12. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Tan D; Wang Y; Tong Y; Chen GQ Trends Biotechnol; 2021 Sep; 39(9):953-963. PubMed ID: 33431229 [TBL] [Abstract][Full Text] [Related]
13. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Behera S; Priyadarshanee M; Vandana ; Das S Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614 [TBL] [Abstract][Full Text] [Related]
14. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. De Donno Novelli L; Moreno Sayavedra S; Rene ER Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906 [TBL] [Abstract][Full Text] [Related]
15. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review. Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S Biotechnol Genet Eng Rev; 2023 Oct; 39(2):897-936. PubMed ID: 36641590 [TBL] [Abstract][Full Text] [Related]
16. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Tan FHP; Nadir N; Sudesh K Front Bioeng Biotechnol; 2022; 10():879476. PubMed ID: 35646848 [TBL] [Abstract][Full Text] [Related]
17. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review. Gutschmann B; Huang B; Santolin L; Thiele I; Neubauer P; Riedel SL Microbiol Res; 2022 Nov; 264():127177. PubMed ID: 36058055 [TBL] [Abstract][Full Text] [Related]
18. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives. Sohn YJ; Son J; Lim HJ; Lim SH; Park SJ Bioresour Technol; 2022 Sep; 360():127575. PubMed ID: 35792330 [TBL] [Abstract][Full Text] [Related]
19. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Zheng Y; Chen JC; Ma YM; Chen GQ Metab Eng; 2020 Mar; 58():82-93. PubMed ID: 31302223 [TBL] [Abstract][Full Text] [Related]