These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38006236)

  • 1. Sake yeast symbiosis with lactic acid bacteria and alcoholic fermentation.
    Watanabe D
    Biosci Biotechnol Biochem; 2024 Feb; 88(3):237-241. PubMed ID: 38006236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR
    Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H
    J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient Signaling via the TORC1-Greatwall-PP2A
    Watanabe D; Kajihara T; Sugimoto Y; Takagi K; Mizuno M; Zhou Y; Chen J; Takeda K; Tatebe H; Shiozaki K; Nakazawa N; Izawa S; Akao T; Shimoi H; Maeda T; Takagi H
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30341081
    [No Abstract]   [Full Text] [Related]  

  • 4. Diversity of yeasts in Indian fermented foods and alcoholic beverages.
    Tamang JP; Lama S
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36809779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial interactions in alcoholic beverages.
    Torres-Guardado R; Esteve-Zarzoso B; Reguant C; Bordons A
    Int Microbiol; 2022 Jan; 25(1):1-15. PubMed ID: 34347199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique case in which Kimoto-style fermentation was completed with Leuconostoc as the dominant genus without transitioning to Lactobacillus.
    Ito K; Niwa R; Yamagishi Y; Kobayashi K; Tsuchida Y; Hoshino G; Nakagawa T; Watanabe T
    J Biosci Bioeng; 2023 Jun; 135(6):451-457. PubMed ID: 37003936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae.
    Eliodório KP; de Gois E Cunha GC; White BA; Patel DHM; Zhang F; Hettema EH; Basso TO; Gombert AK; Raghavendran V
    Appl Environ Microbiol; 2022 Mar; 88(5):e0206821. PubMed ID: 35044803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling of taste-related compounds during the fermentation of Japanese sake brewed with or without a traditional seed mash (kimoto).
    Taniguchi M; Takao Y; Kawasaki H; Yamada T; Fukusaki E
    J Biosci Bioeng; 2020 Jul; 130(1):63-70. PubMed ID: 32265130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of microbial symbiotic coexistence in traditional fermentation.
    Furukawa S; Watanabe T; Toyama H; Morinaga Y
    J Biosci Bioeng; 2013 Nov; 116(5):533-9. PubMed ID: 23791634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods.
    Watanabe D; Takagi H
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31437265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Level Production of Isoleucine and Fusel Alcohol by Expression of the Feedback Inhibition-Insensitive Threonine Deaminase in
    Isogai S; Nishimura A; Kotaka A; Murakami N; Hotta N; Ishida H; Takagi H
    Appl Environ Microbiol; 2022 Mar; 88(5):e0213021. PubMed ID: 35020456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and Bacterial Components in Sake and Sake Production Process.
    Akaike M; Miyagawa H; Kimura Y; Terasaki M; Kusaba Y; Kitagaki H; Nishida H
    Curr Microbiol; 2020 Apr; 77(4):632-637. PubMed ID: 31250090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sake lees on cheese components in cheese ripened by Aspergillus oryzae and lactic acid bacteria.
    Hagi T; Kurahashi A; Oguro Y; Kodaira K; Kobayashi M; Hayashida S; Yamashita H; Arakawa Y; Miura T; Sato K; Tomita S; Suzuki S; Kusumoto KI; Moriya N; Nomura M
    J Dairy Sci; 2022 Jun; 105(6):4868-4881. PubMed ID: 35465988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kuratsuki bacteria and sake making.
    Nishida H
    Biosci Biotechnol Biochem; 2024 Feb; 88(3):249-253. PubMed ID: 37833236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wine produced from date palm (Phoenix dactylifera L.) fruits using Saccharomyces cerevisiae X01 isolated from Nigerian locally fermented beverages.
    Oladoja EO; Oyewole OA; Okeke SK; Azuh VO; Oladoja OI; Jagaba A
    Arch Microbiol; 2021 Jan; 203(1):193-204. PubMed ID: 32803346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Yeast Alcoholic Fermentations.
    Walker GM; Walker RSK
    Adv Appl Microbiol; 2018; 105():87-129. PubMed ID: 30342724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Japanese sake making using wild yeasts isolated from natural environments.
    Nakagawa T; Yoshimura A; Sawai Y; Hisamatsu K; Akao T; Masaki K
    Biosci Biotechnol Biochem; 2024 Feb; 88(3):231-236. PubMed ID: 38364793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic Compound Profiles in Alcoholic Black Currant Beverages Produced by Fermentation with
    Kelanne N; Yang B; Liljenbäck L; Laaksonen O
    J Agric Food Chem; 2020 Sep; 68(37):10128-10141. PubMed ID: 32805115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages.
    Varela C
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9861-9874. PubMed ID: 27787587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.