These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38006660)
1. Structure prediction of physiological bis(amino acidato)copper(II) species in aqueous solution: The copper(II) compounds with l-glutamine and l-histidine. Ramek M; Sabolović J J Inorg Biochem; 2024 Feb; 251():112430. PubMed ID: 38006660 [TBL] [Abstract][Full Text] [Related]
2. Bis(amino acidato)copper(II) compounds in blood plasma: a review of computed structural properties and amino acid affinities for Cu Sabolović J Arh Hig Rada Toksikol; 2024 Sep; 75(3):159-171. PubMed ID: 39369326 [TBL] [Abstract][Full Text] [Related]
3. Conformational Analyses of Physiological Binary and Ternary Copper(II) Complexes with l-Asparagine and l-Histidine; Study of Tridentate Binding of Copper(II) in Aqueous Solution. Ramek M; Marković M; Mutapčić I; Pejić J; Kelterer AM; Sabolović J ChemistryOpen; 2019 Jul; 8(7):852-868. PubMed ID: 31309033 [TBL] [Abstract][Full Text] [Related]
4. The Important Role of the Hydroxyl Group on the Conformational Adaptability in Bis(l-threoninato)copper(II) Compared to Bis(l-allo-threoninato)copper(II): Quantum Chemical Study. Marković M; Ramek M; Loher C; Sabolović J Inorg Chem; 2016 Aug; 55(15):7694-708. PubMed ID: 27442350 [TBL] [Abstract][Full Text] [Related]
5. Structure prediction of neutral physiological copper(II) compounds with l-cysteine and l-histidine. Ramek M; Pejić J; Sabolović J J Inorg Biochem; 2021 Oct; 223():111536. PubMed ID: 34274876 [TBL] [Abstract][Full Text] [Related]
6. Calculating the geometry and Raman spectrum of physiological bis(L-histidinato)copper(II): an assessment of DFT functionals for aqueous and isolated systems. Sabolović J; Ramek M; Marković M J Mol Model; 2017 Sep; 23(10):290. PubMed ID: 28952023 [TBL] [Abstract][Full Text] [Related]
7. Complex formation, chemical exchange, species structure, and stereoselective effects in the copper(II)-L/DL-histidine systems. Shtyrlin VG; Zyavkina YI; Gilyazetdinov EM; Bukharov MS; Krutikov AA; Garipov RR; Mukhtarov AS; Zakharov AV Dalton Trans; 2012 Jan; 41(4):1216-28. PubMed ID: 22120906 [TBL] [Abstract][Full Text] [Related]
8. Combined EXAFS and DFT structure calculations provide structural insights into the 1:1 multi-histidine complexes of Cu(II) , Cu(I) , and Zn(II) with the tandem octarepeats of the mammalian prion protein. Pushie MJ; Nienaber KH; McDonald A; Millhauser GL; George GN Chemistry; 2014 Jul; 20(31):9770-83. PubMed ID: 25042361 [TBL] [Abstract][Full Text] [Related]
9. Simple and mixed complexes of copper(II) with 8-hydroxyquinoline derivatives and amino acids: Characterization in solution and potential biological implications. Sgarlata C; Arena G; Bonomo RP; Giuffrida A; Tabbì G J Inorg Biochem; 2018 Mar; 180():89-100. PubMed ID: 29247871 [TBL] [Abstract][Full Text] [Related]
10. Combined experimental and computational study of cis-trans isomerism in bis(L-valinato)copper(II). Marković M; Judaš N; Sabolović J Inorg Chem; 2011 Apr; 50(8):3632-44. PubMed ID: 21417229 [TBL] [Abstract][Full Text] [Related]
11. Coordination modes of histidine. 4. Coordination structures in the copper(II)-L-histidine (1:2) system. Casella L; Gullotti M J Inorg Biochem; 1983 Feb; 18(1):19-31. PubMed ID: 6834030 [TBL] [Abstract][Full Text] [Related]
12. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
13. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria. Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012 [TBL] [Abstract][Full Text] [Related]
15. Experimental and computational studies of the macrocyclic effect of an auxiliary ligand on electron and proton transfers within ternary copper(II)-histidine complexes. Song T; Lam CN; Ng DC; Orlova G; Laskin J; Fang DC; Chu IK J Am Soc Mass Spectrom; 2009 Jun; 20(6):972-84. PubMed ID: 19230704 [TBL] [Abstract][Full Text] [Related]
16. DNA-fiber EPR spectroscopy as a tool to study DNA-metal complex interactions: DNA binding of hydrated Cu(II) ions and Cu(II) complexes of amino acids and peptides. Chikira M J Inorg Biochem; 2008; 102(5-6):1016-24. PubMed ID: 18314194 [TBL] [Abstract][Full Text] [Related]
17. Ferromagnetism in malonato-bridged copper(II) complexes. Synthesis, crystal structures, and magnetic properties of [[Cu(H2O)3][Cu(mal)2(H2O)]]n and [[Cu(H2O)4]2[Cu(mal)2(H2O)]][Cu(mal)2(H2O)2][[Cu(H2O)4][Cu(mal)2(H2O)2][(H2mal = malonic acid). Ruiz-Pérez C; Sanchiz J; Molina MH; Lloret F; Julve M Inorg Chem; 2000 Apr; 39(7):1363-70. PubMed ID: 12526437 [TBL] [Abstract][Full Text] [Related]
18. Stability of binary and ternary copper(II) complexes with 1,10-phenanthroline, 2,2'-bipyridyl and some alpha-amino acids in aqueous medium. Türkel N; Sahin C Chem Pharm Bull (Tokyo); 2009 Jul; 57(7):694-9. PubMed ID: 19571413 [TBL] [Abstract][Full Text] [Related]
19. Selective extraction of histidine derivatives by metal affinity with a copper(II)-chelating ligand complex in an aqueous two-phase system. Oshima T; Oshima C; Baba Y J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():73-9. PubMed ID: 25864007 [TBL] [Abstract][Full Text] [Related]
20. Copper(II)-binding ability of stereoisomeric cis- and trans-2-aminocyclohexanecarboxylic acid-L-phenylalanine dipeptides. A combined CW/pulsed EPR and DFT study. Nagy NV; Van Doorslaer S; Szabó-Plánka T; Van Rompaey S; Hamza A; Fülöp F; Tóth GK; Rockenbauer A Inorg Chem; 2012 Feb; 51(3):1386-99. PubMed ID: 22225497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]