BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38006790)

  • 1. In situ interaction between the hormone 17α-ethynylestradiol and the liquid-ordered phase composed of the lipid rafts sphingomyelin and cholesterol.
    Ruiz GCM; do Carmo Morato LF; Pazin WM; Oliveira ON; Constantino CJL
    Bioorg Chem; 2024 Feb; 143():107002. PubMed ID: 38006790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and morphological effects of the contraceptive hormone 17 α-ethynylestradiol on fluid lipid membranes.
    Ruiz GCM; do Carmo Morato LF; Pazin WM; Milano F; Constantino CJL; Valli L; Giotta L
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111794. PubMed ID: 33940520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: A PM-IRRAS study.
    Vázquez RF; Daza Millone MA; Pavinatto FJ; Fanani ML; Oliveira ON; Vela ME; Maté SM
    Colloids Surf B Biointerfaces; 2019 Jan; 173():549-556. PubMed ID: 30347381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers.
    Zaborowska M; Broniatowski M; Fontaine P; Bilewicz R; Matyszewska D
    J Phys Chem B; 2023 Aug; 127(32):7135-7147. PubMed ID: 37551973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.
    Ando J; Kinoshita M; Cui J; Yamakoshi H; Dodo K; Fujita K; Murata M; Sodeoka M
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4558-63. PubMed ID: 25825736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupting membrane raft domains by alkylphospholipids.
    Gomide AB; Thomé CH; dos Santos GA; Ferreira GA; Faça VM; Rego EM; Greene LJ; Stabeli RG; Ciancaglini P; Itri R
    Biochim Biophys Acta; 2013 May; 1828(5):1384-9. PubMed ID: 23376656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of giant unilamellar vesicles and large unilamellar vesicles of liquid-ordered phase membranes in the presence of Triton X-100.
    Tamba Y; Tanaka T; Yahagi T; Yamashita Y; Yamazaki M
    Biochim Biophys Acta; 2004 Nov; 1667(1):1-6. PubMed ID: 15533300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y; Ohba T; Miyata H; Ohki K
    Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation?
    Shaikh SR; Brzustowicz MR; Gustafson N; Stillwell W; Wassall SR
    Biochemistry; 2002 Aug; 41(34):10593-602. PubMed ID: 12186543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes.
    López-Montero I; Vélez M; Devaux PF
    Biochim Biophys Acta; 2007 Mar; 1768(3):553-61. PubMed ID: 17292325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine.
    Tanaka T; Sano R; Yamashita Y; Yamazaki M
    Langmuir; 2004 Oct; 20(22):9526-34. PubMed ID: 15491182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative.
    Ariola FS; Li Z; Cornejo C; Bittman R; Heikal AA
    Biophys J; 2009 Apr; 96(7):2696-708. PubMed ID: 19348752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of Langmuir and solid supported lipid films with sphingomyelin.
    Jurak M; Golabek M; Holysz L; Chibowski E
    Adv Colloid Interface Sci; 2015 Aug; 222():385-97. PubMed ID: 24725646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol.
    Verstraeten SL; Deleu M; Janikowska-Sagan M; Claereboudt EJS; Lins L; Tyteca D; Mingeot-Leclercq MP
    Sci Rep; 2019 May; 9(1):7285. PubMed ID: 31086211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization.
    Caritá AC; Mattei B; Domingues CC; de Paula E; Riske KA
    Langmuir; 2017 Jul; 33(29):7312-7321. PubMed ID: 28474888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation.
    Ayuyan AG; Cohen FS
    Biophys J; 2006 Sep; 91(6):2172-83. PubMed ID: 16815906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.