These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38006792)

  • 21. The transportation, time-dependent distribution of heavy metals in paddy crops.
    Wang CX; Mo Z; Wang H; Wang ZJ; Cao ZH
    Chemosphere; 2003 Feb; 50(6):717-23. PubMed ID: 12688482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation.
    Altaf MA; Hao Y; Shu H; Mumtaz MA; Cheng S; Alyemeni MN; Ahmad P; Wang Z
    J Hazard Mater; 2023 Jul; 454():131468. PubMed ID: 37146338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress.
    Thao NP; Khan MI; Thu NB; Hoang XL; Asgher M; Khan NA; Tran LS
    Plant Physiol; 2015 Sep; 169(1):73-84. PubMed ID: 26246451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation.
    Gulzar ABM; Mazumder PB
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology.
    Singhal RK; Kumar M; Bose B; Mondal S; Srivastava S; Dhankher OP; Tripathi RD
    Int J Phytoremediation; 2023; 25(2):187-206. PubMed ID: 35549957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China.
    Hu B; Jia X; Hu J; Xu D; Xia F; Li Y
    Int J Environ Res Public Health; 2017 Sep; 14(9):. PubMed ID: 28891954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanistic model of plant heavy metal tolerance.
    Thapa G; Sadhukhan A; Panda SK; Sahoo L
    Biometals; 2012 Jun; 25(3):489-505. PubMed ID: 22481367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues.
    Chowardhara B; Saha B; Awasthi JP; Deori BB; Nath R; Roy S; Sarkar S; Santra SC; Hossain A; Moulick D
    Chemosphere; 2024 Jul; 359():142178. PubMed ID: 38704049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbe- plant interaction as a sustainable tool for mopping up heavy metal contaminated sites.
    Sorour AA; Khairy H; Zaghloul EH; Zaghloul HAH
    BMC Microbiol; 2022 Jul; 22(1):174. PubMed ID: 35799112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tolerance capacities of
    Zeng P; Guo Z; Xiao X; Zhou H; Gu J; Liao B
    Int J Phytoremediation; 2022; 24(6):580-589. PubMed ID: 34369831
    [No Abstract]   [Full Text] [Related]  

  • 32. Exogenous N-Acetylcysteine alleviates heavy metal stress by promoting phenolic acids to support antioxidant defence systems in wheat roots.
    Colak N; Torun H; Gruz J; Strnad M; Ayaz FA
    Ecotoxicol Environ Saf; 2019 Oct; 181():49-59. PubMed ID: 31170649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes.
    Ajeesh Krishna TP; Maharajan T; Antony Ceasar S
    Mol Biol Rep; 2023 Jul; 50(7):6147-6157. PubMed ID: 37212961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals.
    Thakur M; Praveen S; Divte PR; Mitra R; Kumar M; Gupta CK; Kalidindi U; Bansal R; Roy S; Anand A; Singh B
    Chemosphere; 2022 Jan; 287(Pt 1):131957. PubMed ID: 34450367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China.
    Wan M; Hu W; Wang H; Tian K; Huang B
    Sci Total Environ; 2021 Aug; 780():146567. PubMed ID: 33774304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanisms of plant adaptive responses to heavy metals stress.
    Kosakivska IV; Babenko LM; Romanenko KO; Korotka IY; Potters G
    Cell Biol Int; 2021 Feb; 45(2):258-272. PubMed ID: 33200493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture.
    Ahmed T; Noman M; Ijaz M; Ali S; Rizwan M; Ijaz U; Hameed A; Ahmad U; Wang Y; Sun G; Li B
    Ecotoxicol Environ Saf; 2021 Dec; 227():112888. PubMed ID: 34649136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants.
    Jogawat A; Yadav B; Chhaya ; Narayan OP
    Physiol Plant; 2021 Sep; 173(1):259-275. PubMed ID: 33586164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auxin metabolic network regulates the plant response to metalloids stress.
    Singh H; Bhat JA; Singh VP; Corpas FJ; Yadav SR
    J Hazard Mater; 2021 Mar; 405():124250. PubMed ID: 33109410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives.
    Thakur S; Singh L; Wahid ZA; Siddiqui MF; Atnaw SM; Din MF
    Environ Monit Assess; 2016 Apr; 188(4):206. PubMed ID: 26940329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.